

CHAPTER 18

Tracking Key CAADP Indicators and Implementation Processes

Wondwosen Tefera, Tsitsi Makombe, Paul Guthiga,
and Julia Collins

Introduction

Over the past 22 years, the Comprehensive Africa Agriculture Development Programme (CAADP) has driven meaningful progress toward agricultural growth and transformation on the continent. Since its launch in 2003 under the Maputo Declaration, CAADP has elevated agriculture's profile within Africa's political agenda, mobilized investments for the sector, strengthened agricultural sector policy dialogue and planning, and improved monitoring and accountability, particularly through the CAADP Biennial Review (BR) process. It has also delivered tangible results, contributing to agricultural productivity growth, expanded trade in agricultural products, and measurable reductions in poverty and child malnutrition in several countries (Benin 2016; Badiane, Tefera, and Collins 2025). For example, between 2003 and 2021, intra-African agricultural trade more than doubled, rising from US\$5.4 billion to US\$14.9 billion, while agricultural labor productivity increased by over 40 percent between 2000 and 2021 (Badiane, Tefera, and Collins 2025).

However, progress has slowed in recent years due to multiple shocks, including global economic slowdowns, the COVID-19 pandemic, climate change impacts, and geopolitical disruptions. These shocks have exposed the fragility of agrifood systems, raising concerns about the rising numbers of undernourished and poor people. To address these challenges, Africa must further transform its agrifood systems into engines of inclusive growth, resilience, and sustainability. This transformation will require coordinated investments, evidence-based policies, and strong accountability mechanisms.

Moreover, the transformation will need to leverage the tremendous opportunities available to Africa's agrifood systems. For example, the continent has 65 percent of the world's remaining uncultivated arable land, a young and entrepreneurial population, and rapidly growing domestic and regional markets (AfDB 2016). Further, innovations in information and communication technology (ICT) and climate-smart practices, combined with the momentum of the African Continental Free Trade Area (AfCFTA), offer a pathway to boost productivity, drive agro-industrialization, generate jobs, and position Africa as a competitive global player in agrifood value chains.

Recognizing this urgent need, in January 2025, African Heads of State and Government adopted a new CAADP Strategy and Action Plan and the

Kampala CAADP Declaration. The declaration, which will be implemented from 2026 to 2035, is themed *Building Resilient and Sustainable Agrifood Systems in Africa*. The Kampala Declaration marks a historic shift as it reframes CAADP from a narrow focus on agricultural growth to a comprehensive agenda for the transformation of agrifood systems, which considers important linkages between agriculture, food, nutrition, health, and the environment. The declaration outlines six broad commitment areas for transforming Africa's agrifood systems: intensifying sustainable food production, agro-industrialization, and trade; boosting investment and financing for agrifood system transformation; ensuring food and nutrition security; promoting inclusivity and equitable livelihoods; building resilient agrifood systems; and strengthening agrifood systems governance. The declaration identifies 22 targets across these 6 commitment areas (AUC and AUDA-NEPAD 2025; AKADEMIYA2063 2025).

The Regional Strategic Analysis and Knowledge Support System (ReSAKSS) was launched in 2006 to serve as Africa's leading platform for monitoring progress toward CAADP goals by providing data and analytics that support CAADP benchmarking, review, dialogue, and mutual learning. In 2007, at the request of the African Union Commission (AUC), ReSAKSS spearheaded the development of the first-ever CAADP monitoring and evaluation (M&E) framework to assess the progress and performance of CAADP implementation. This pioneering framework identified key indicators for tracking resource allocation and outcomes, detailed the necessary data sources and methods, and provided an implementation plan to operationalize the system (Benin, Johnson, and Omilola 2010).

With the launch of the 2014 Malabo Declaration, the AUC and the African Union Development Agency–New Partnership for Africa's Development (AUDA-NEPAD) designed a more comprehensive CAADP Results Framework (RF) for the 2015–2025 period to benchmark progress toward the Malabo commitments (AUC and NPCA 2015). Following the recent adoption of the new 10-year CAADP agenda under the Kampala Declaration, ReSAKSS, alongside other technical partners, intends to support efforts led by AUC and AUDA-NEPAD to develop a new CAADP Results Framework (RF) as well as BR Indicators to monitor progress under the new declaration.

The 2015-2025 CAADP RF is structured around three interconnected levels:

- Level 1 (Outcomes): Captures agriculture's contribution to broad development outcomes, such as wealth creation, food and nutrition security, poverty reduction, shared prosperity, and enhanced resilience and sustainability.
- Level 2 (Outputs): Focuses on results from interventions aimed at transforming the agricultural sector, including higher agricultural production and productivity; expanded intra-African trade and functional markets; local agro-industrialization and value chain development that is inclusive of women and youth; improved risk management and livelihood resilience; and sustainable natural resource management.
- Level 3 (Inputs and Processes): Highlights the systemic capacities required to enable transformation, such as inclusive and evidence-based policy processes, accountable and effective institutions, multisectoral coordination, strengthened partnerships, increased public and private investments, and robust data and knowledge systems.

In total, the CAADP RF consists of 38 indicators: 14 at Level 1; 12 at Level 2; and 12 at Level 3 (see Table 18.1). ReSAKSS systematically tracks progress on these indicators through its flagship Annual Trends and Outlook Report (ATOR) and an online data portal (www.resakss.org), both of which provide policymakers, researchers, and development partners with timely evidence to guide agricultural policy and investment decisions.

While the CAADP Results Framework (RF) was developed to track progress in implementing the Malabo Declaration, the CAADP Biennial Review (BR) process, launched in 2015, introduced additional indicators specifically designed to monitor all seven Malabo commitments through the Africa Agriculture Transformation Scorecard (AATS). Of the 59 BR indicators now tracked across 4 BR cycles, 24 were drawn directly from the CAADP RF, with additional indicators introduced over time.

The BR is Africa's principal continent-wide mutual accountability mechanism in the agricultural sector, providing AU

Member States with a platform to collectively assess progress toward achieving the Malabo CAADP goals and commitments. The CAADP RF complements this process by offering valuable context for interpreting BR results and enabling broader analyses. Its longer time series and wider country coverage – spanning both the pre and CAADP periods (1995-2003 and 2003-2024) – make it particularly well-suited for cross-country aggregation and trend analysis. This includes grouping countries by economic categories, regional economic communities (RECs), and CAADP implementation stages, all of which are dimensions that the BR process does not explicitly address.

Although the BR indicators provide wider coverage, they overlap significantly with RF indicators. ReSAKSS currently tracks 18 BR indicators that align

TABLE 18.1—NUMBER OF INDICATORS IN THE CAADP RESULTS FRAMEWORK AND MALABO DECLARATION CAADP BIENNIAL REVIEW

2015-2025 CAADP Results Framework	Number of indicators
Level 1: Agriculture's contribution to economic growth and inclusive development	14
Level 2: Agricultural transformation and inclusive growth	12
Level 3: Systemic capacity to deliver results	12
Total number of indicators	38
Malabo Declaration Commitments tracked using the CAADP Biennial Review	Number of indicators
Commitment 1: CAADP processes and values	3
Commitment 2: Investment finance in agriculture	6
Commitment 3: Ending hunger by 2025	26
Commitment 4: Halving poverty by 2025	8
Commitment 5: Boosting intra-African trade in agricultural commodities and services	7
Commitment 6: Enhancing resilience to climate variability	4
Commitment 7: Mutual accountability for results and actions	5
Total number of indicators	59

Source: Authors, based on AUC and NPCA (2015) and AUC (2014).

TABLE 18.2—CAADP RESULTS FRAMEWORK INDICATORS DISCUSSED IN THE CHAPTER

Level 1: Agriculture's Contribution to Economic Growth and Inclusive Development
1. L1.1.1 GDP per capita (constant 2015 US\$)
2. L1.1.2 Household final consumption expenditure per capita (constant 2015 US\$)
3. L1.2.1 Prevalence of undernourishment (% of population)
4. L1.2.2a Prevalence of underweight, weight for age (% of children under 5)
5. L1.2.2b Prevalence of stunting, height for age (% of children under 5)
6. L1.2.2c Prevalence of wasting, weight for height (% of children under 5)
7. L1.2.3 Cereal import dependency index
8. L1.3.1 Employment rate
9. L1.3.3 Poverty gap at \$3.00 a day (2021 PPP)
10. L1.3.4 Extreme poverty headcount ratio at \$3.00 a day (2021 PPP), % of population
Level 2: Agricultural Transformation and Sustained Inclusive Agricultural Growth
11. L2.1.1 Agriculture value added (million, constant 2015 US\$)
12. L2.1.2 Agriculture Production Index (2014–2016 = 100)
13. L2.1.3 Agriculture value added per agricultural worker (constant 2015 US\$)
14. L2.1.4 Agriculture value added per hectare of agricultural land (constant 2015 US\$)
15. L2.1.5 Yield for the five most important agricultural commodities
16. L2.2.1 Value of intra-African agricultural trade (constant 2015 US\$, million)
17. L2.4.2 Existence of food reserves, local purchases for relief programs, early warning systems, and school feeding programs
Level 3: Strengthening Systemic Capacity to Deliver Results
18. L3.1.1 Existence of a new NAIP/NAFSIP developed through an inclusive and participatory process
19. L3.2.1 Existence of inclusive institutionalized mechanisms for mutual accountability and peer review
20. L3.3.1 Existence of and quality in the implementation of evidence-informed policies and corresponding human resources
21. L3.4.1 Existence of a functional multisectoral and multistakeholder coordination body
22. L3.4.2 Cumulative number of agriculture-related public–private partnerships that are successfully undertaken
23. L3.4.3 Cumulative value of investments in the public–private partnerships
24. L3.5.1 Government agriculture expenditure (billion, constant 2015 US\$)
25. L3.5.2 Government agriculture expenditure (% of total government expenditure)
26. L3.5.3 Government agriculture expenditure (% of agriculture value added)
27. L3.6.2 Existence of an operational country SAKSS

Source: AUC and NPCA (2015).

Note: GDP = gross domestic product; NAIP = national agriculture investment plan; NAFSIP = national agriculture and food security investment plan; PPP = purchasing power parity; SAKSS = Strategic Analysis and Knowledge Support System. Highlighted indicators are also BR indicators.

with those in the CAADP RF (Table 18.2). An additional six indicators straddle both the CAADP RF and BR, but these have not yet been included in the ReSAKSS database due to gaps in data availability, i.e., either because data are missing altogether or are not consistently available across countries. These include measures of postharvest loss, women's and children's dietary adequacy, resilience, sustainable land management, and the capacity of national statistical systems.

Currently, only 27 of the 38 CAADP RF indicators can be fully tracked (Table 18.2). Other data gaps remain within the CAADP RF, including indicators related to social protection and private sector investment. Achieving comprehensive coverage will require sustained commitment and investment by countries and their partners to strengthen and fund data collection systems.

Objectives of the Chapter

This chapter reviews Africa's progress in implementing the CAADP process and on key CAADP RF indicators. The goal is to identify areas of good progress that should be sustained or scaled up, as well as areas of poor performance that demand urgent action if the continent is to meet its agricultural transformation goals.

Our analysis covers 27 of the 38 CAADP RF indicators for which cross-country data are available (Table 18.2). Detailed descriptions of the indicators and aggregated statistics are presented in Annexes 1, 2, and 3. Progress on the 27 indicators is examined across different geographic and economic country groupings, with trends compared between the early years of CAADP implementation (2003–2008), the middle period (2008–2014), and the Malabo Declaration era (2014–2024). This last period is the primary focus of this review.

The chapter begins with an assessment of CAADP implementation at national and regional levels, focusing on progress in developing evidence-based, Malabo-compliant national agriculture investment plans (NAIPs) and the operationalization of mutual accountability processes. This includes agriculture joint sector reviews (JSRs) at the country level and the CAADP BR. The CAADP implementation process is led by the AUC and

AUDA-NEPAD, in partnership with national governments, RECs, non-state actors, and development and technical partners. The chapter also highlights the role of ReSAKSS in providing data and analytics to guide CAADP monitoring, review, dialogue, and mutual learning and accountability processes.

Progress in CAADP Implementation Processes

Implementation Support

The *Country CAADP Implementation Guidelines under the Malabo Declaration*, developed by the AUC and AUDA-NEPAD (2016), outline four major stages of CAADP implementation at the country level:

1. Domestication of the Malabo Declaration
2. Development of a Malabo-compliant national agriculture investment plan (NAIP)
3. Implementation of the NAIP
4. Assessment of NAIP implementation progress through an agriculture joint sector review (JSR)

For the first stage, a Malabo domestication event led by AUC, AUDA-NEPAD, and the representative REC is held to convene national CAADP constituencies to agree on a roadmap toward reviewing the current NAIP, if any, and developing a revised implementation plan. Twenty-five African countries have held Malabo Domestication events to date, including nearly all southern African countries and most western African countries (Annex Table L3(a)). The rollout of Malabo domestication events has been less consistent in other African regions.

The fact that only 25 African countries held Malabo domestication events underscores the need for stronger support to countries as they implement the Kampala Declaration. Effective domestication will require helping countries align Kampala commitments with their national programs and budgets, in addition to fostering high-level political ownership of the Kampala CAADP Declaration by senior policymakers who can champion the agenda. It will also entail strengthening countries' analytical capacity to incorporate Kampala commitments into their NAIPs, mobilizing both public and private resources to

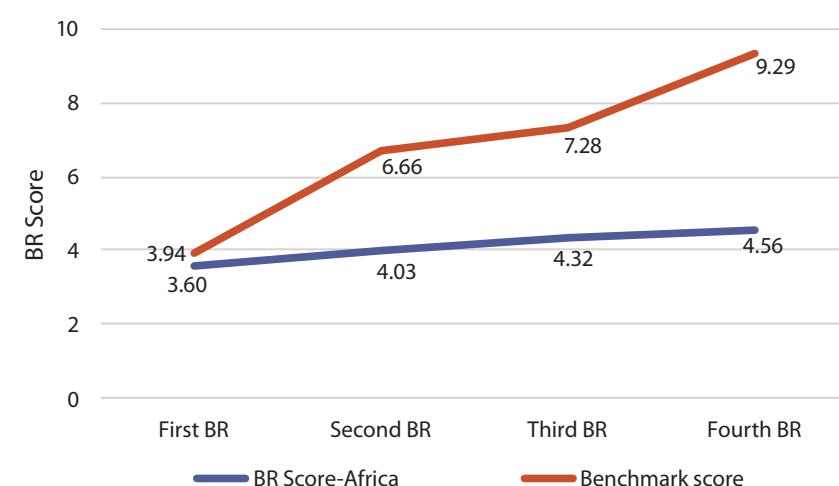
fund domestication activities, and incentivizing action through peer learning and accountability platforms such as the CAADP BR.

To be considered Malabo-compliant, a NAIP should have been assessed through an AU-led independent technical review that recognized its alignment with the goals and targets of the Malabo Declaration. Further, the recommendations from the review mission should have been integrated into the final NAIP document. A total of 36 African countries have developed and validated first-generation NAIPs, i.e., NAIPS that were developed either prior to the Malabo Declaration or were assessed as not being aligned with the Malabo Declaration (Annex Table L3(a)). Three RECs have also developed first-generation Regional Agriculture Investment Plans, namely the East African Community (EAC), the Inter-governmental Authority on Development (IGAD), and the Economic Community of West African States (ECOWAS). By September 2025, 42 countries had developed NAIPs that were compliant with the Malabo Declaration – also referred to as second-generation NAIPs. These 42 countries included all Western African countries and most countries in other African regions.

Progress on Malabo domestication and the development, assessment, and implementation of Malabo-compliant NAIPs has faced challenges at the country, regional, and continental levels. These challenges are typically related to insufficient human capital, technical capacity, and financial resources, as well as inadequate coordination mechanisms (AUDA-NEPAD 2022; Collins et al. 2022). Finding ways to address these challenges will be vital to the successful implementation of the Kampala CAADP agenda for agriculture-led development in Africa.

The CAADP's and Malabo Declaration's principle of mutual accountability has been operationalized through the twin processes of the BR and agriculture JSRs at national, regional, and continental levels. The JSR provides an inclusive, evidence-based platform for agricultural stakeholders to review progress jointly; hold each other accountable for actions, results, and commitments; and, based on identified gaps, agree on future implementation actions. Because JSRs are the bedrock for inclusive and comprehensive mutual accountability processes, AUC, AUDA-NEPAD, and technical partners, including ReSAKSS, have supported countries and RECs to embed their BR process into national and regional JSR processes. At the request of AUC and AUDA-NEPAD, ReSAKSS has helped to strengthen agriculture JSRs since 2014 by assessing JSRs or JSR-like processes at country and regional levels, completing JSR assessments in 21 countries and

in two RECs (Annex Table L3(a)). These JSR assessments evaluate the institutional and policy landscape as well as the quality of current agricultural review processes. The assessments identify areas that need additional strengthening to help countries and RECs develop regular, comprehensive, and inclusive JSR processes. In the 2024/2025 period, EAC undertook its first joint review of its regional agricultural investment plan (RAIP) with a focus on youth employment.


Biennial Review

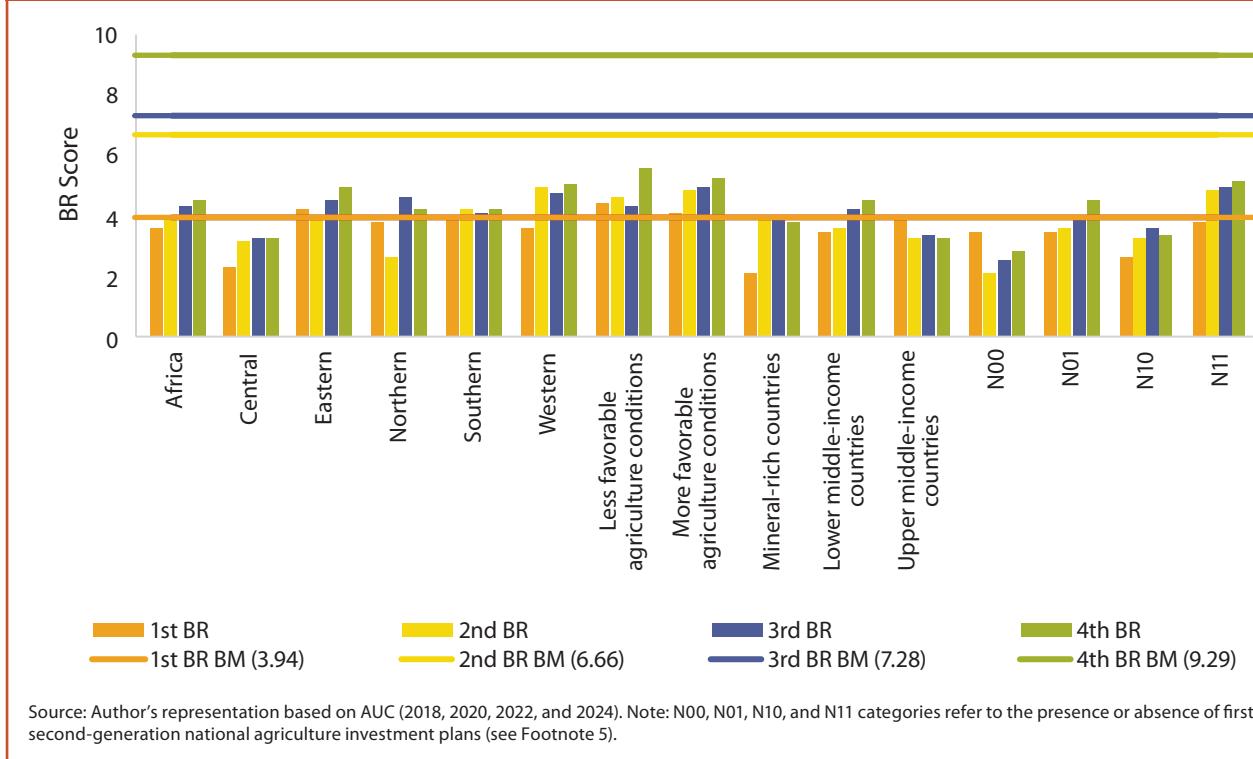
Established under the 2014 Malabo Declaration, the Biennial Review (BR) mechanism provides a continental platform to assess Africa's progress toward achieving its agricultural growth and transformation commitments by 2025. Since 2017, the AUC has released four rounds of the BR reports evaluating the continent's progress on the Malabo Declaration commitments. The fifth and final BR report for the Malabo period will be released in early 2026.

During each reporting period, BR benchmarks are used to assess the performance of African countries in meeting the Malabo Declaration commitments. The benchmarks are the minimum scores countries in Africa need to achieve in each review cycle to be on track in that specific year toward achieving the Malabo Declaration targets by 2025. During the first BR in 2017, the benchmark score was 3.94, meaning that countries and regions required a score of at least 3.94 out of 10 to be on track toward achieving the Malabo targets. This benchmark score rises in each review cycle to reflect the minimum level of improvement that is required to achieve the Malabo Declaration targets by 2025. For the second BR in 2019, the minimum score rose to 6.66, then to 7.28 during the third BR in 2021, and then to 9.29 during the fourth BR in 2023. During the BR Writeshop held in Kigali, Rwanda, in September 2025, participants agreed that the benchmark for the fifth (2025) BR would be 9.40 out of 10. The benchmark remains under 10 because the fifth BR covers the 2015-2024 period and does not include the target year of 2025.

Overall, the continent recorded a steady improvement in its BR score during each review cycle, but this was far less than the minimum score required to be on track. This resulted in a widening gap between the minimum score and the actual BR score recorded by the continent as a whole (Figure 18.1).

FIGURE 18.1—BR SCORE AND BENCHMARK FOR AFRICA (BY BR CYCLE)

Source: Author's representation based on AUC (2018, 2020, 2022, and 2024).

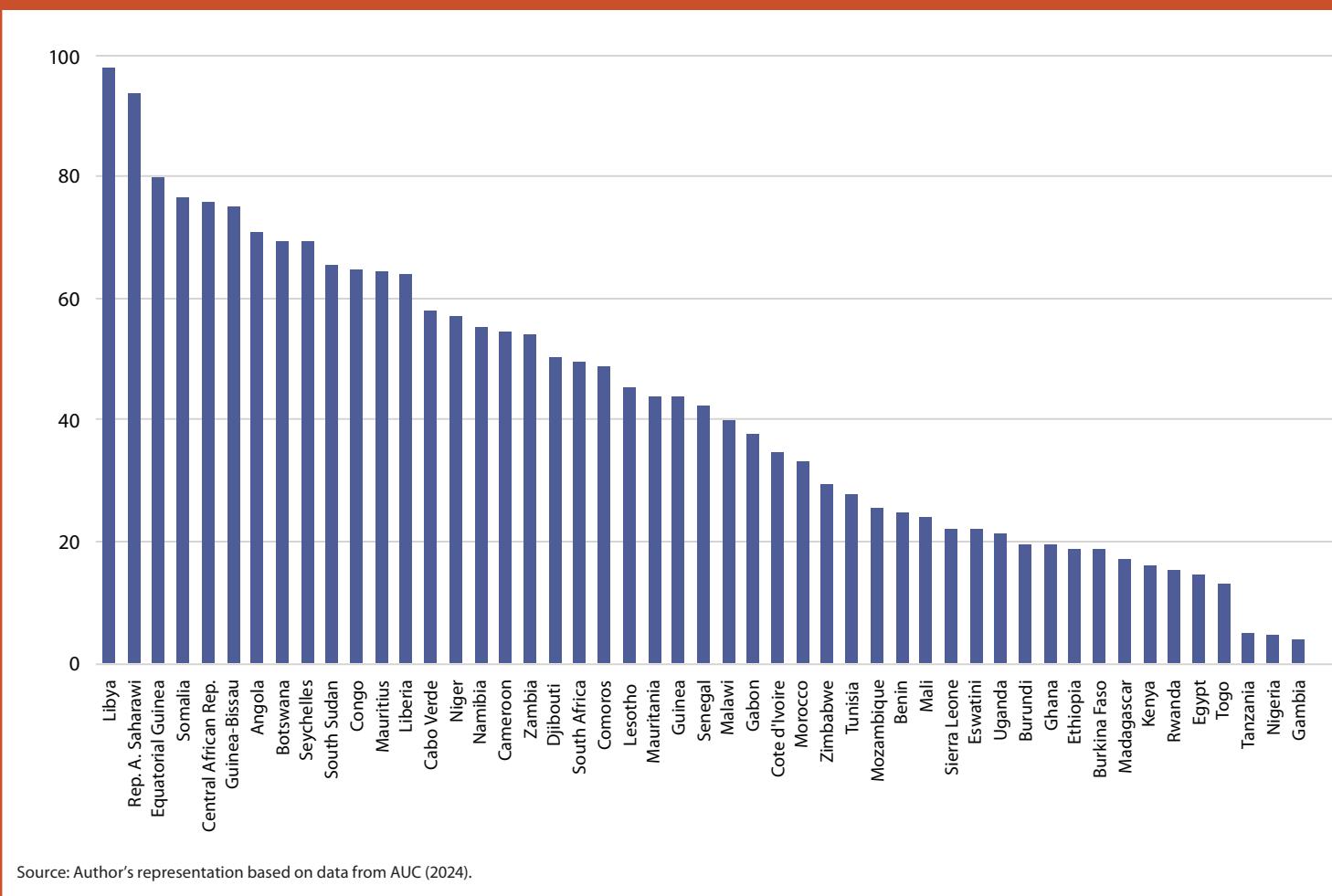

This finding is consistent across the different country groupings.¹ As Figure 18.2 shows, with the exception of the first BR cycle, where some of the country groupings exceeded the minimum score, none were on track in the subsequent BR periods. Nevertheless, most of the country groupings recorded rising BR scores, indicating that they were moving in the right direction, but their progress fell short of the increase required to achieve the Malabo targets by 2025.

This finding is also similar at the country level, where the number of countries that were on track declined from 20 in the first BR to 4 in the second BR. In the third BR, this number had declined to just one. During the fourth BR period, none of the countries were able to meet the minimum score of 9.29 out of 10 (Annex Table L3(c)).

One of the major challenges that affected the reporting in each BR cycle is data quality, including missing data. During the fourth BR cycle, more than a third of the required data was missing at the continental level (AUC 2024).

¹ See the following section for a detailed explanation of the country categories used in the analysis.

FIGURE 18.2—BR SCORES FOR AFRICA OVERALL AND THE DIFFERENT SUBGROUPS


At country level, only three countries had missing data rates of less than 10 percent, namely The Gambia, Nigeria, and Tanzania. On the other hand, 57 percent or 28 of the 49 participating countries reported missing data rates of at least one-third of the required data points (Figure 18.3).

Looking ahead to the Kampala Declaration implementation period, the establishment and training of BR data clusters organized by Malabo themes represents a significant step forward in terms of the technical support provided by ReSAKSS in selected countries. These data clusters have played an important role in crowding in other data collection efforts, filling in missing data, and improving data quality overall. Consequently, it will be important to form commitment-specific data clusters under the Kampala Declaration

in more countries. These clusters would be composed of knowledgeable individuals responsible for data collection, review, and validation. After forming the clusters, members should receive comprehensive training on indicators, guidelines, reporting templates, data traceability, and consistency. Adequate capacity-building and backstopping support will be essential during data collection to ensure proper use of all relevant data sources, accurate documentation, and reliable reporting. Finally, during the BR data validation stage, backstopping will be required to maintain data consistency, accuracy, and traceability.

Another important consideration to help ensure data availability is the selection of indicators to track progress made under the Kampala Declaration.

FIGURE 18.3—PROPORTION OF MISSING DATA IN THE FOURTH BR (PERCENT, %)

Indicators must be simplified and SMART (Specific, Measurable, Achievable, Relevant, and Time-bound) so that they can be collected, measured, and monitored (Makombe, Ulimwengu, and Matchaya 2025). At the same time, it will be important to ensure the inclusion of an adequate number of indicators to enable tracking of the Kampala Declaration's 22 targets.

Progress on CAADP Indicators

In this section, we examine Africa's performance on 27 of the 38 CAADP RF indicators for which data are available, organized by the three RF levels. Detailed data on the 27 indicators are presented in Annexes 1, 2, and 3. The annexes include data on the quantitative indicators at the aggregate level for seven different groupings:

- Africa as a whole
- The AU's five geographic regions: central, eastern, northern, southern, and western
- Five economic categories: low-income countries with less favorable agricultural conditions; low-income countries with more favorable agricultural conditions; mineral-rich, low-income countries; lower-middle-income countries; and upper-middle-income countries²
- Eight RECs: Community of Sahel-Saharan States (CEN-SAD), Common Market for Eastern and Southern Africa (COMESA), EAC, Economic Community of Central African States (ECCAS), ECOWAS, IGAD, Southern African Development Community (SADC), and Arab Maghreb Union (UMA)
- By the period during which the country signed the CAADP compact: CC0, CC1, CC2, and CC3³
- By the level or stage of CAADP implementation attained by the country at the end of 2015: CL0, CL1, CL2, CL3, and CL4⁴
- By whether the country has formulated a first- or second-generation NAIP: N00, N10, N01, and N11⁵

Annex 4 lists countries in the various geographic, economic, and REC categories, while Annex 5 lists the countries in the different groupings by CAADP compact signing or implementation level attained. Annex 6 lists countries by NAIP formulation category, while Annexes 1, 2, and 3 provide comprehensive information on all the categories. The discussion in this chapter focuses on progress made among the different geographic groupings, economic categories, and NAIP categories. Progress is reported over different sub-periods, with achievements made in the early CAADP sub-period of 2003-2008 being compared to achievements in the later sub-periods of 2008-2014 and 2014-2024.⁶ The discussion in this chapter focuses mainly on progress made during the Malabo Declaration period to date, that is, from 2014 to the last year with available data. For all indicators, changes over time are reported in terms of annual average percentage change.

The discussion of trends and changes in CAADP indicators pertains to country categories or groupings as a whole and not to individual countries within the categories. For example, the measures reported may relate to Africa as a whole, central Africa as a group, or groups of countries categorized by their stage of NAIP formulation experience. Presenting the trends by different groups helps to determine how the implications for strengthening or maintaining desirable outcomes, or for reversing undesirable outcomes under the CAADP process, may differ across the continent, without inference of causality.

2 The five economic categories are exclusive, with countries first classified as low-income, lower-middle-income, and higher-middle-income. Low-income countries are then classified as having more or less favorable agricultural conditions. Then, countries with more favorable agricultural conditions are classified as mineral-rich or not. See Benin, Johnson, and Omilola (2010) for a description of the categorization methodology and the criteria used for classifying countries based on income, favorability of agricultural conditions, and mineral wealth.

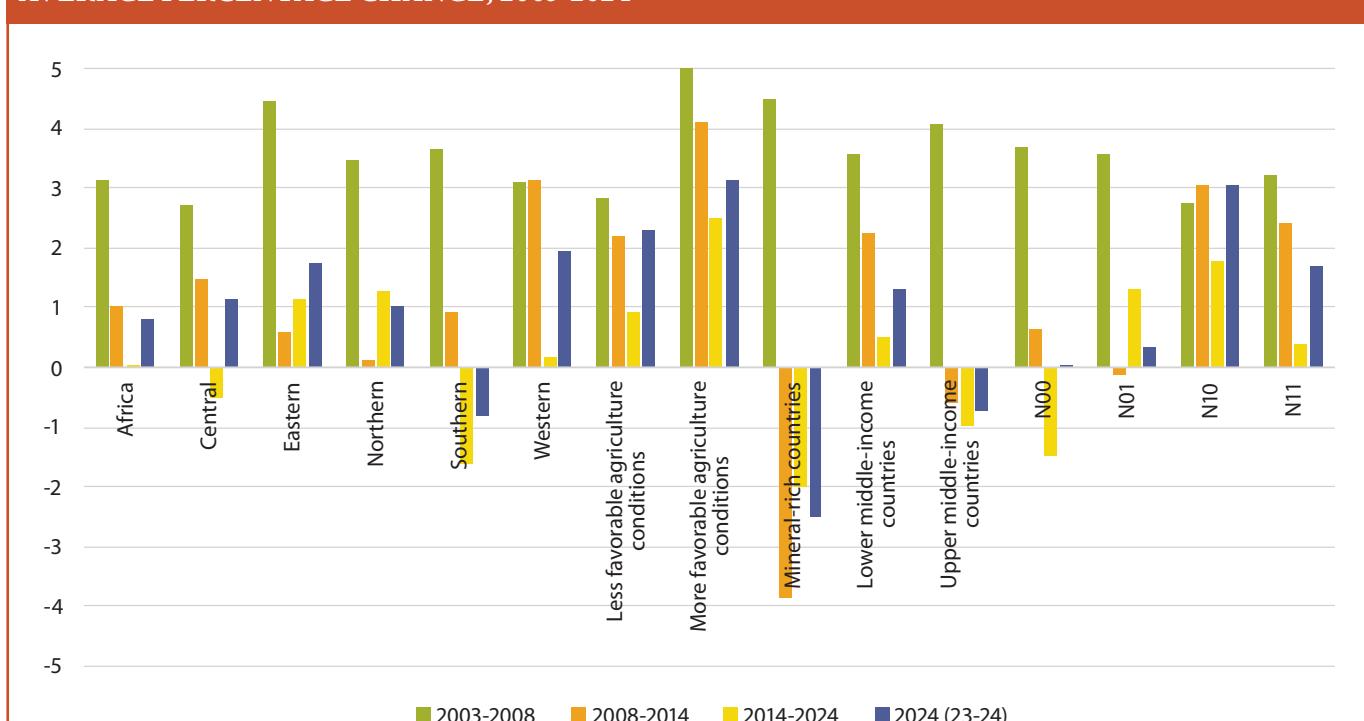
3 CC0 = group of countries that have not signed a CAADP compact; CC1 = group of countries that signed the compact in the period 2007 to 2009; CC2 = group of countries that signed the compact between 2010 and 2012; CC3 = group of countries that signed the compact between 2013 and 2015.

4 CL0 = group of countries that have not started the CAADP process or have not yet signed a compact; CL1 = group of countries that have signed a CAADP compact; CL2 = group of countries that have signed a compact and formulated their NAIP; CL3 = group of countries that have signed a compact, formulated their NAIP, and secured one external funding source; CL4 = group of countries that have signed a compact, formulated their NAIP, and secured more than one external funding source. Obtaining funding for NAIPs is an important step in CAADP implementation, as countries that have secured external funding are expected to be better able to implement NAIPs and other agricultural investments (Benin 2016).

5 N00 = group of countries that have neither a first-generation NAIP (NAIP1.0) nor a second-generation NAIP (NAIP2.0); N10 = group of countries that have NAIP1.0 but do not have NAIP2.0; N01 = group of countries that have NAIP2.0 but not NAIP1.0; N11 = group of countries that have both NAIP1.0 and NAIP2.0. A second-generation NAIP refers to those NAIPs that take into account the 2014 Malabo Declaration commitments. Thus, a country NAIP can be considered second generation even if the country does not have a pre-Malabo Declaration, first-generation NAIP. Such countries are in country category N01.

6 The years 2003, 2008, and 2014 represent important milestones as CAADP was launched in 2003, renewed in 2008, and renewed again in 2014 with the Malabo Declaration. Therefore, the post-CAADP sub-periods for reporting on progress use overlapping years to reflect that these milestones usually occurred in June in the middle of the year. The overlapping sub-periods are 2003 to 2008, 2008 to 2014, and 2014 to 2024.

CAADP Results Framework Outcome (Level 1) Indicators: Agriculture's Contribution to Economic Growth and Inclusive Development


Wealth Creation

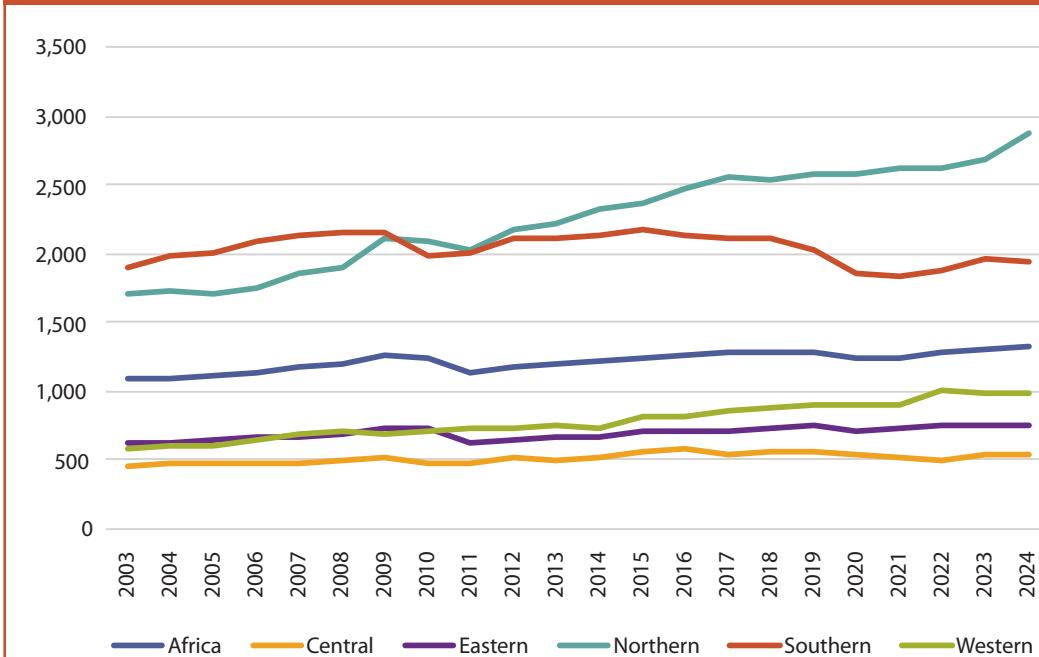
Agricultural development is an important contributor to improved livelihoods and increased wealth, both of which are key development outcomes. The CAADP Results Framework measures wealth creation through indicators related to economic growth and well-being, including per capita Gross Domestic Product (GDP) and per capita household consumption expenditure. Economic growth in Africa has been uneven throughout the CAADP period, with initially robust growth followed by a period of declining growth. As Figure 18.4 shows, GDP per capita at the continental level showed strong growth in the early CAADP period of 2003-2008 (3.15 percent) but declined thereafter and remained virtually flat during the Malabo period of 2014-2024, with average annual growth of 0.03 percent. This relatively poor performance is partly due to the COVID-19 pandemic, which caused a marked decline in GDP per capita in 2020, although growth had already begun to slow before the onset of the pandemic. Most recently, growth in GDP per capita reached 0.82 percent from 2023 to 2024.

Income growth during the Malabo period differed markedly across Africa's geographic regions, with moderate growth in eastern and northern Africa of 1.16 and 1.29 percent per year, respectively;

low growth of 0.16 percent in western Africa; and declines in GDP per capita in central and southern Africa of 0.51 and 1.61 percent per year, respectively. Growth in 2023-2024 was positive for all regions except for southern Africa, where GDP per capita declined by 0.79 percent. Patterns contrasted even more sharply across economic categories. Per capita GDP growth was highest in low-income countries with more favorable agricultural conditions during all CAADP periods. This category of countries recorded relatively strong growth of 2.51 percent during the Malabo period of 2014-2024 and 3.16 percent in 2023-2024. The ability of this group of countries to sustain their growth despite the COVID-19 pandemic reflects the reality that agriculture was less affected by the pandemic compared to other sectors (Tefera, Collins, and Makombe 2021).

FIGURE 18.4—GROSS DOMESTIC PRODUCT (GDP) PER CAPITA, CONSTANT 2015 US\$, ANNUAL AVERAGE PERCENTAGE CHANGE, 2003-2024

Source: ReSAKSS based on World Bank (2025) and ILO (2025). Note: N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).


In contrast, low-income mineral-rich countries experienced sharp declines in GDP per capita of 1.99 percent during the Malabo period. Growth in these countries has continued to decline, with a decrease in GDP per capita of 2.51 percent in 2023-2024. Across NAIP categories, countries with neither a first- nor a second-generation NAIP (N00 countries) showed the lowest growth during the Malabo period, while countries with only a first-generation NAIP (N10 countries) showed the highest growth.

During the entire CAADP period, Africa's GDP per capita grew at around 25.9 percent, rising from \$1,584.35 in 2003 to \$1,994.12 in 2024 (Annex Table L1.1.1).⁷ As reflected in Figure 18.4, nearly all of the growth occurred in earlier CAADP phases, with little growth experienced during the crisis-prone Malabo period. Among the regional, economic, and NAIP categories, GDP levels are highest in northern Africa, upper middle-income countries, and countries with neither a first- nor a second-generation NAIP (N00 countries), respectively.

Another related measure of economic well-being is household consumption expenditure, or the total spending of households on goods and services. Household consumption expenditure per capita for Africa as a whole increased from \$1,080.38 in 2003 to \$1,221.95 in 2014, and then to \$1,324.49 in 2024. This represents growth of 22.6 percent over the entire CAADP period and growth of 8.4 percent during the Malabo period (Figure 18.5, Annex Table L1.1.2), reflecting the decelerating GDP per capita growth shown in Figure 18.4.

Household consumption expenditure patterns varied significantly across geographic regions. Northern Africa showed the strongest growth over the CAADP period and also had the highest per capita expenditure value in 2024. Southern Africa had the second-highest average expenditure value in 2024, but showed uneven growth dynamics over the CAADP period, with alternating periods of rising and falling per capita household consumption expenditure. Average expenditures in the region were only slightly higher in 2024 than

FIGURE 18.5—HOUSEHOLD CONSUMPTION EXPENDITURE PER CAPITA, CONSTANT 2015 US\$, 2003-2024

Source: ReSAKSS based on World Bank (2025) and ILO (2025).

their value at the beginning of the Malabo period in 2014. Western Africa also showed faster expenditure growth than the continental average, while expenditure rose more slowly in eastern and central Africa.

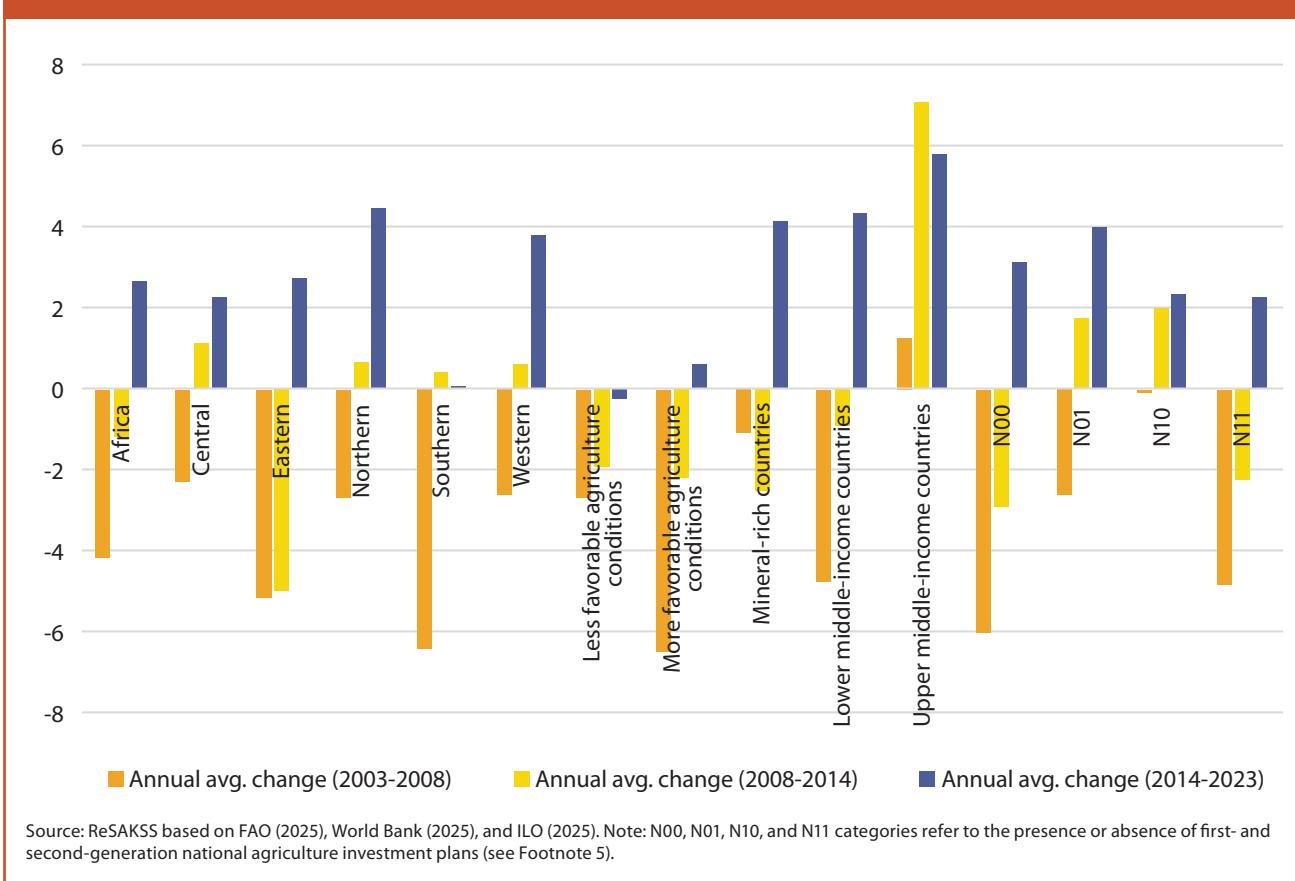
Food and Nutrition Security

Improving food and nutrition security is a key aspiration of the Malabo Declaration as well as one of the six commitments of the 2025 Kampala CAADP Declaration. The continent has made crucial gains in reducing hunger since the pre-CAADP period, but this progress has decelerated over time. The prevalence of undernourishment, or the share of the population unable

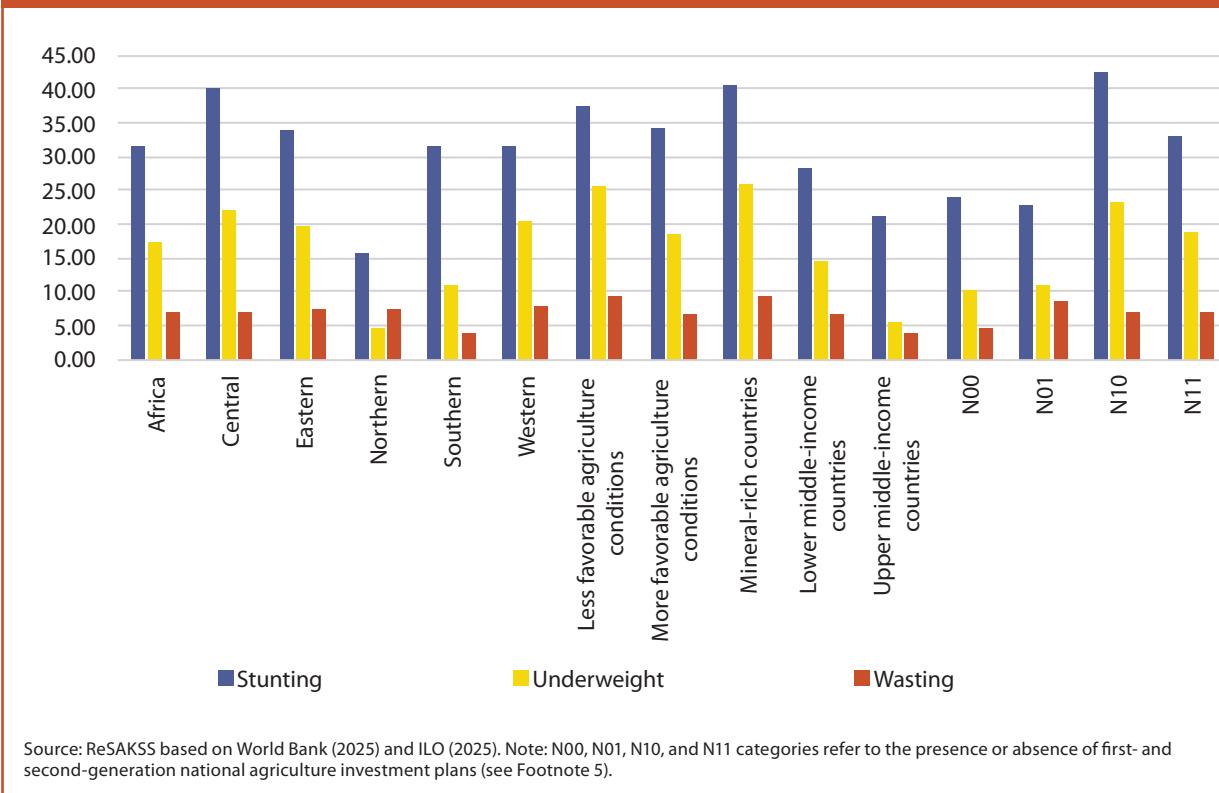
⁷ Unless stated otherwise, all dollar amounts in the chapter refer to constant 2015 US dollars.

to meet its required intake of calories, declined significantly during the early CAADP period but began to increase again during the 2010s, growing by an average of 2.7 percent per year during the 2014-2023 period for Africa as a whole (Figure 18.6, Annex Table L1.2.1). The trend of rising undernourishment during the Malabo period was widespread, affecting every geographic region. Growth in hunger was sharpest in northern and western Africa at 4.5 and 3.8 percent per year, respectively. Southern Africa recorded the lowest increase at 0.1 percent per year. Similarly, undernourishment rose in all NAIP categories and in all economic categories except for low-income countries with

less favorable agricultural conditions. Across all country groupings, the highest increases during the Malabo period were observed in upper-middle-income countries, with average annual growth of 5.8 percent.


Unfortunately, the increases in hunger during the Malabo period erased many of the gains made during earlier CAADP periods. In 2023, the last year with available data, undernourishment affected 19.9 percent of all Africans, a figure that was only slightly lower than the prevalence of 21.7 percent observed two decades earlier in 2003 (Annex Table L1.2.1). Across geographic regions, undernourishment in 2023 was highest in central Africa at 30.6 percent and

lowest in northern Africa at 7.3 percent. Undernourishment was also particularly high in low-income mineral-rich countries (35.3 percent) and countries with a first- but not a second-generation NAIP (N10 countries) (37.5 percent).


The increase in undernourishment over the past decade reflects the effects of various shocks. These include the drought related to the 2015-2016 El Niño event, conflicts, declining export commodity prices, and the COVID-19 pandemic (Tefera et al. 2024). The varied impacts of these shocks underline the importance of efforts to strengthen resilience, as recognized in the Kampala CAADP Declaration commitment to build resilient agrifood systems.

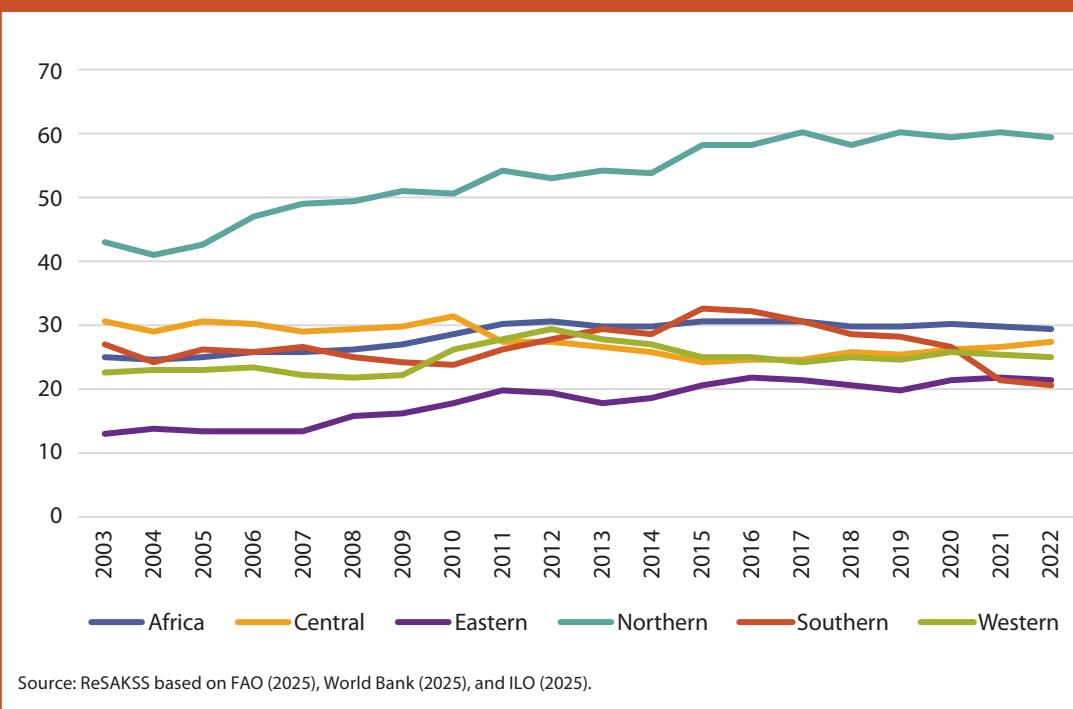
In contrast to population undernourishment patterns, child malnutrition, as measured by the prevalence of underweight, stunting, and wasting in children under five years old, has continued to decline during the Malabo period. For all three indicators, progress in reducing child malnutrition

FIGURE 18.6—PREVALENCE OF UNDERNOURISHMENT, AVERAGE ANNUAL PERCENTAGE CHANGE, 2003-2023

FIGURE 18.7—PREVALENCE OF UNDERWEIGHT, STUNTING, AND WASTING IN AFRICA, PERCENTAGE OF CHILDREN YOUNGER THAN FIVE YEARS, 2014-2022 AVERAGE

slowed somewhat during the Malabo period (2014-2022), in comparison to the previous period (2008-2014), but still remained more rapid than during the first CAADP period from 2003 to 2008 (Annex Tables L1.2.2A, L1.2.2B, and L1.2.2C). Despite the sustained progress, child malnutrition remains high. The average prevalence of stunting, underweight, and wasting for Africa as a whole during the Malabo period was measured at 31.5 percent, 17.3 percent, and 7.1 percent, respectively (Figure 18.7).

The differences between country groupings are similar to population undernourishment patterns. Among geographic regions, central Africa had the highest levels of stunting and underweight at 40.0 percent and 21.8 percent, respectively. The highest rate of wasting was observed in eastern


Africa at 7.6 percent. Stunting and underweight were lowest in northern Africa, while wasting was lowest in southern Africa. High rates of child malnutrition indicators were also measured in low-income mineral-rich countries and countries with a first- but not a second-generation NAIP (N10 countries).

The cereal import dependency ratio, or the share of a country's total cereal supply that is sourced from imports rather than domestic production, is a measure of food security at the national level. Although imports can make an important contribution to national food security, extremely high reliance on imports can render a country vulnerable to global trade shocks. Africa's cereal import dependency ratio rose slightly during the first decade of CAADP but remained stable during the Malabo period at around 30 percent. In 2022, the last year with recorded data, imports represented 29.2 percent of Africa's total cereal supplies (Figure 18.8, Annex Table L1.2.3).

Import dependency patterns differ sharply between northern Africa and the other geographic regions. Dependency has

consistently been highest in northern Africa, with a widening gap throughout the CAADP period. In 2022, the cereal import dependency ratio reached 59.6 percent in northern Africa, over 30 percentage points above the region with the second-highest ratio, central Africa. Southern and eastern Africa had the lowest dependency ratios of 20.6 percent and 21.2 percent, respectively. According to the categorization used in the food import vulnerability index (FIVI) developed for the Food Security Portal by the International Food Policy Research Institute (IFPRI 2025), northern Africa's level of cereal import dependency is considered high, while all other regions show low dependency.

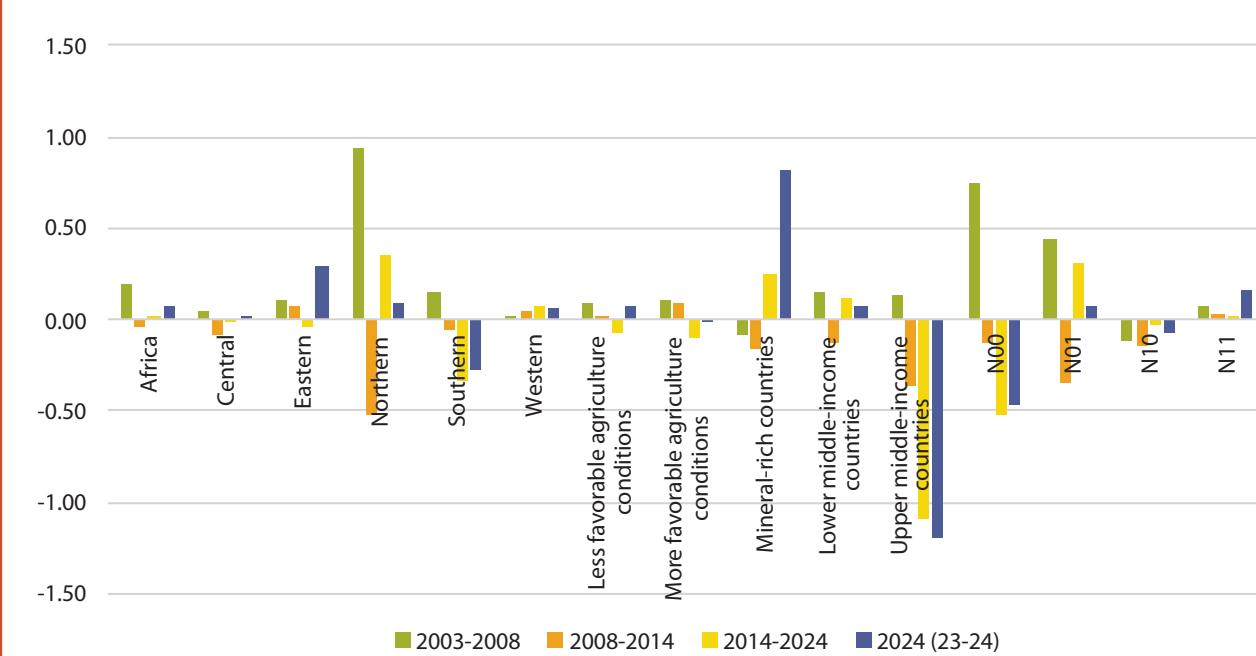
FIGURE 18.8—CEREAL IMPORT DEPENDENCY RATIO, 2003-2022 (PERCENT, %)

Source: ReSAKSS based on FAO (2025), World Bank (2025), and ILO (2025).

Africa's rate declined by an average of 0.34 percent per year. The largest changes were observed among the group of upper-middle-income countries, where employment rates declined by 1.10 percent per year. Among geographic regions, western Africa had the highest employment rate as a share of the labor force in 2024 at 97.1 percent, while southern Africa showed the lowest rate at 83.3 percent. The continental average was 93.7 percent (Annex Table L1.3.1A).

The second measure of employment rate examines the employed share of the working-age population rather than of the labor force. In contrast to the increasing trend in employment as a share of the labor force, the employment rate as a share of the population, 15 years and older, declined moderately over the Malabo period for Africa as a whole, decreasing by an average of 0.2 percent annually (Annex Table L1.3.1B). The population employment rate also declined in every geographic region and in most other country groupings. Low-income mineral-rich countries were an exception to this trend, as they recorded an annual average increase of 0.7 percent. Increases in the employment rate as a share of the labor force, combined with decreases in the population employment rate, suggest that

Africa's labor force decreased as a share of the population during the Malabo period. This may reflect increased educational opportunities, which encourage young people to delay joining the labor force (Fox 2021).

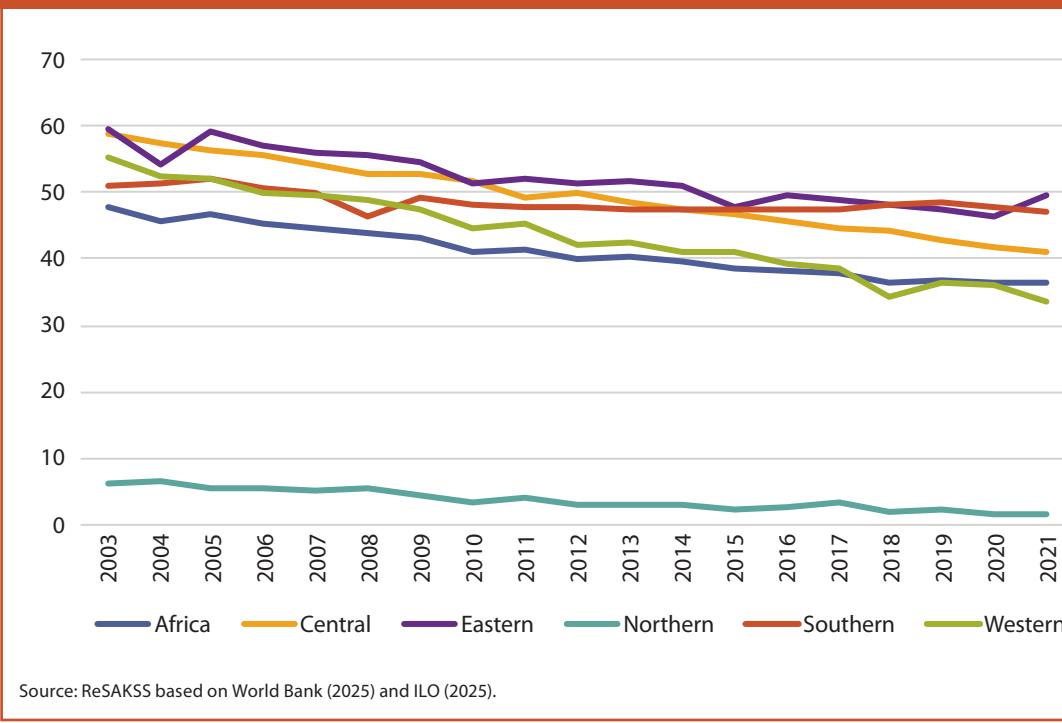

Employment

The CAADP RF includes two related but distinct measures of employment: employment as a share of the labor force and employment as a share of the working-age population. Africa's employment rate as a share of the labor force increased slightly during the Malabo period at an average of 0.02 percent annually (Figure 18.9, Annex Table L1.3.1A). However, this average masks decreasing employment rates prior to and during the COVID-19 pandemic, which were followed by increasing employment rates (Tefera et al. 2024). Most recently, the employment rate as a share of the labor force rose by 0.07 percent from 2023 to 2024. Patterns differed markedly by country group, with northern Africa showing a relatively large increase in the employment rate of 0.35 percent per year on average during the Malabo period, while southern

Poverty

Persistent poverty remains a pressing development issue throughout the continent. Africa has made progress in reducing the prevalence of poverty, but the rate of decrease has been relatively modest, and the absolute number of people living in poverty has continued to rise throughout the past several decades (World Bank 2025). For the continent as a whole, the poverty headcount ratio at the current international poverty line of \$3.00 per day (2021 purchasing power parity [PPP]) declined from 48.0 percent in 2003 to 36.2 percent in 2021, the

FIGURE 18.9—EMPLOYMENT RATE, PERCENTAGE OF LABOR FORCE AGES 15 TO 64 YEARS, ANNUAL AVERAGE PERCENTAGE CHANGE, 2003-2024

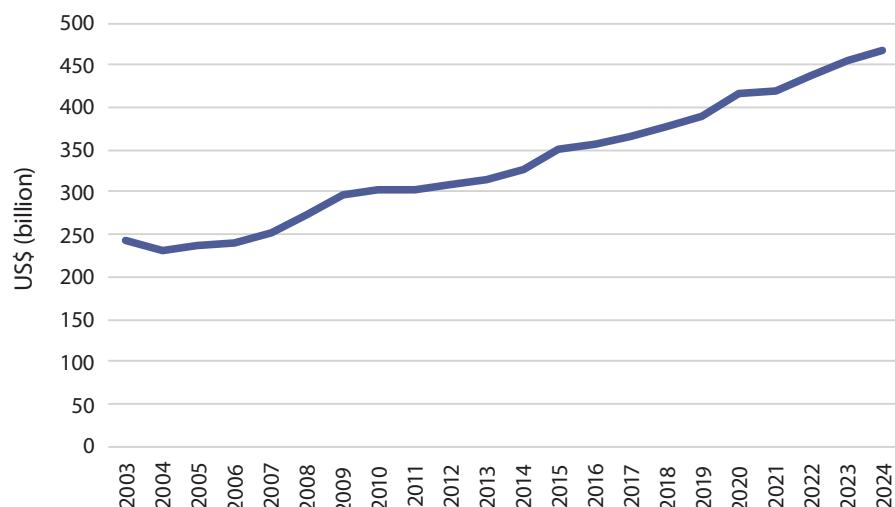

Source: ReSAKSS based on ILO (2025). Note: The labor force refers to the share of the population that is either working or available for and seeking work. N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).

year with the most recent data available (Figure 18.10, Annex Table L1.3.4). The pace of poverty reduction declined during the Malabo period, with an annual average reduction of 1.1 percent during the 2014-2021 period versus 1.6 percent during the 2003-2008 and 2008-2014 periods (Annex Table L1.3.4). This reflects patterns of decelerating growth in GDP per capita (Figure 18.5) and household consumption expenditure per capita (Figure 18.6).

Among geographic regions, there is a sharp disparity between northern Africa, where poverty rates declined from 6.3 percent in 2003 to less than 2 percent in 2021, and all the other subregions, whose poverty rates were consistently over 30 percentage points higher. Among the regions of Africa south of the Sahara, the greatest poverty reduction was seen in western Africa, where poverty declined from 55.4 percent in 2003 to 33.5 percent in 2021.

Central Africa came second, with a reduction in poverty from 59.0 percent to 41.1 percent over the same period. In contrast, the poverty rate declined by less than 10 percentage points in southern and eastern Africa. As of 2021, eastern and southern Africa had the highest poverty rates on the continent, followed by central Africa. Among economic categories, upper-middle-income countries had the lowest poverty rates in 2021 at 22.4 percent on average, while low-income mineral-rich countries had the highest poverty rates at 71.6 percent, well above the continental average (Annex Table L1.3.4). Mineral-rich countries registered increases in the poverty rate during the Malabo period. Among the NAIP groups, countries with only the first-generation NAIP (N10 countries) had the highest poverty rates (69.2 percent), while those with only a second-generation NAIP (N01 countries) had the lowest rates (17.2 percent).

FIGURE 18.10—POVERTY HEADCOUNT RATIO AT USPPP\$3.00 PER DAY,
2003-2021


While the poverty headcount ratio measures the share of the population with incomes below the poverty line, the poverty gap measures the average distance below the poverty line for the entire population. The poverty gap, therefore, captures both the prevalence and the severity of poverty. Patterns in the poverty gap as of 2021 are similar to those of the poverty headcount ratio, with the highest poverty gaps observed in southern and eastern Africa, in low-income mineral-rich countries, and in countries with only a first-generation NAIP (Annex Table L1.3.3). The poverty gap declined throughout the CAADP period for Africa as a whole and for most country groupings. At the continental level, the poverty gap declined more rapidly than the poverty headcount ratio, suggesting that the average severity of poverty decreased more than the incidence of poverty.

CAADP Results Framework Output (Level 2) Indicators: Agricultural Transformation and Sustained Inclusive Agricultural Growth

Agricultural Production and Productivity

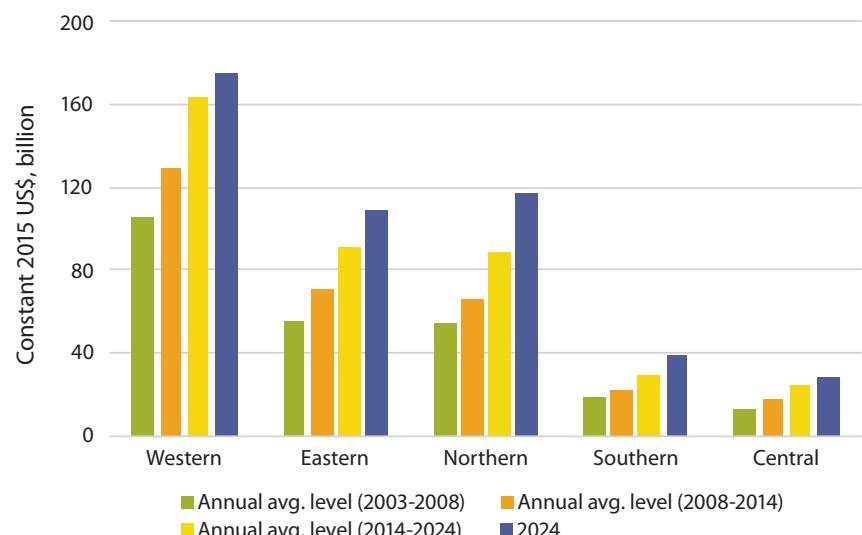

Agriculture remains the cornerstone of African economies, contributing significantly to GDP, exports, employment, and livelihoods. Over the past two decades, Africa's agricultural sector has expanded steadily, with agriculture value added growing from \$242.1 billion in 2003 to \$326.6 billion in 2014 and further to \$466.9 billion in 2024 (Figure 18.11). The sector grew by 93 percent during the entire CAADP period and by 43 percent during the Malabo period alone.

FIGURE 18.11—AGRICULTURE, VALUE ADDED (CONSTANT 2015 US\$, BILLION), AFRICA

Sources: ReSAKSS based on World Bank (2025) and FAO (2025).

FIGURE 18.12—AGRICULTURE, VALUE ADDED, ANNUAL AVERAGE (CONSTANT 2015 US\$, BILLION), BY REGION

Sources: ReSAKSS based on World Bank (2025) and FAO (2025).

FIGURE 18.13—PERCENTAGE DISTRIBUTION OF AGRICULTURE, VALUE ADDED (CONSTANT 2015 US\$, BILLION, 2014-2024)

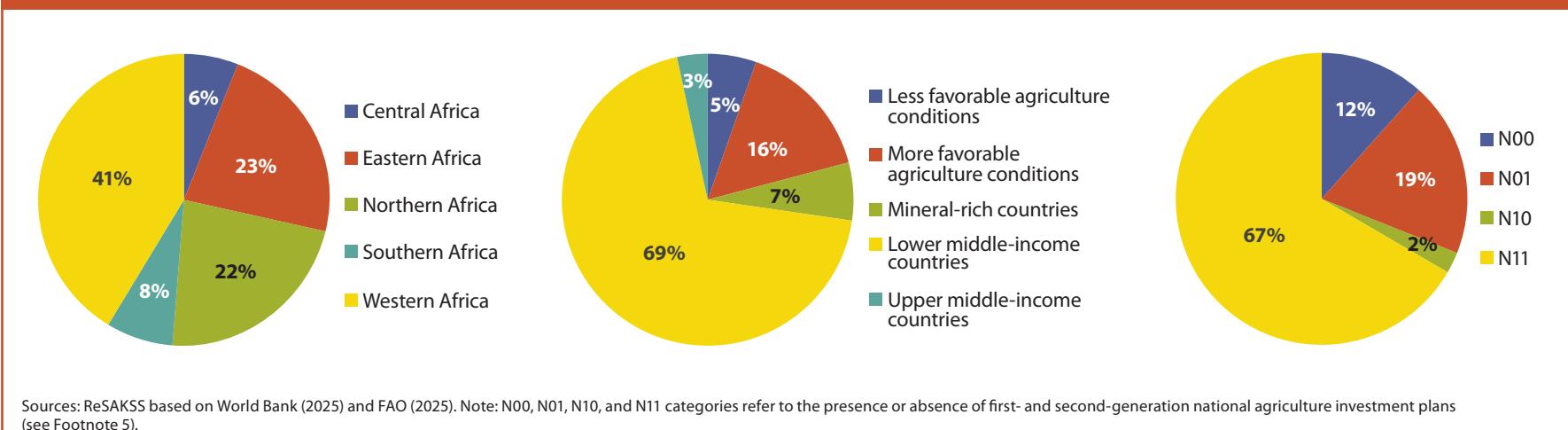
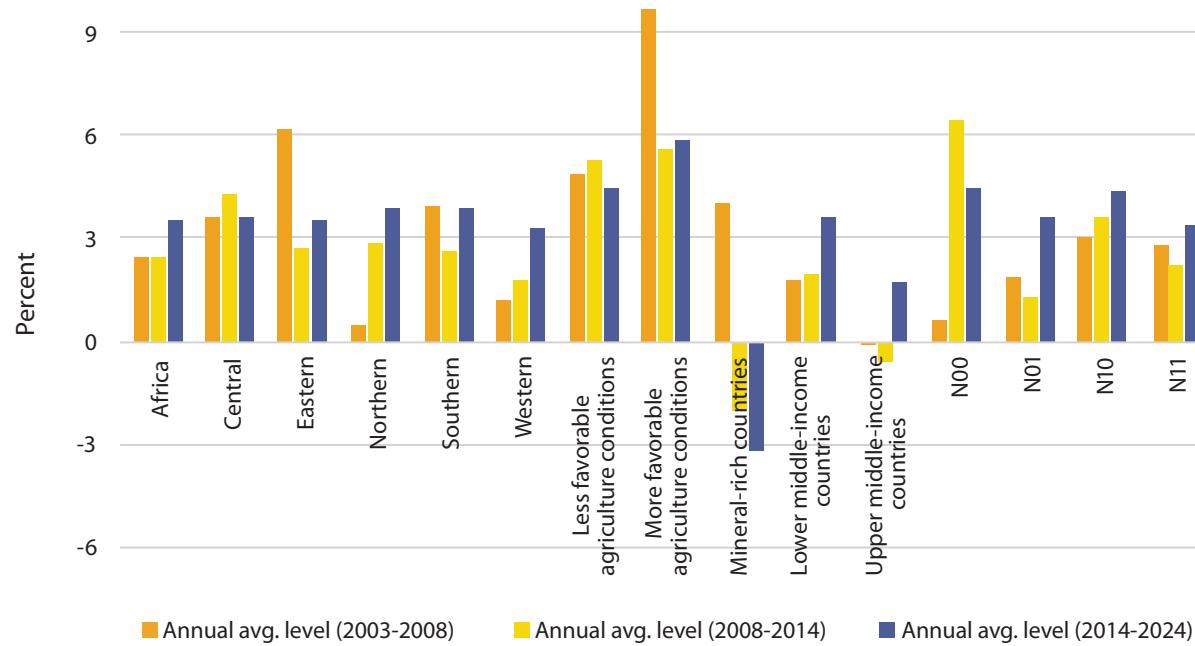
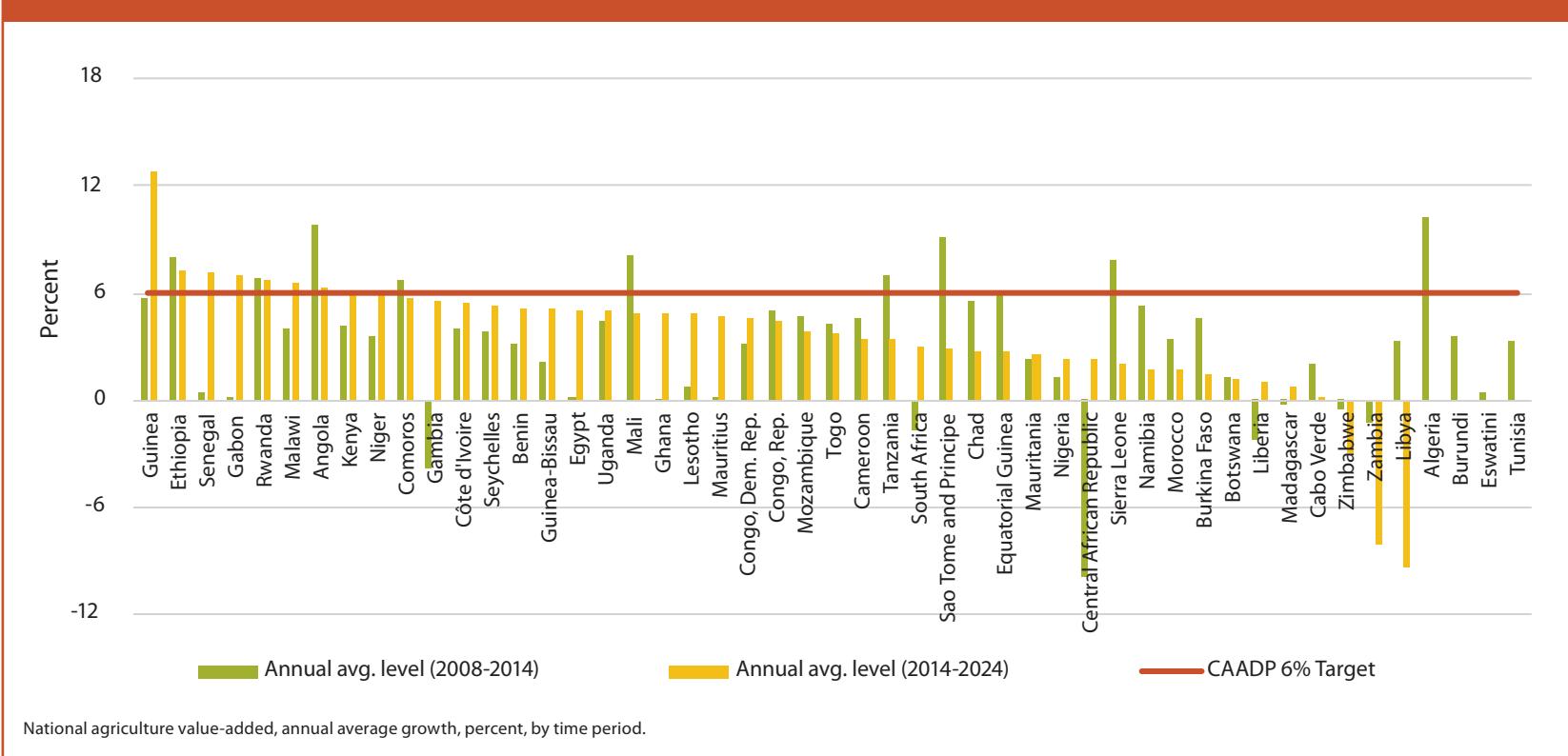



FIGURE 18.14—AGRICULTURE VALUE ADDED, ANNUAL AVERAGE GROWTH, PERCENT

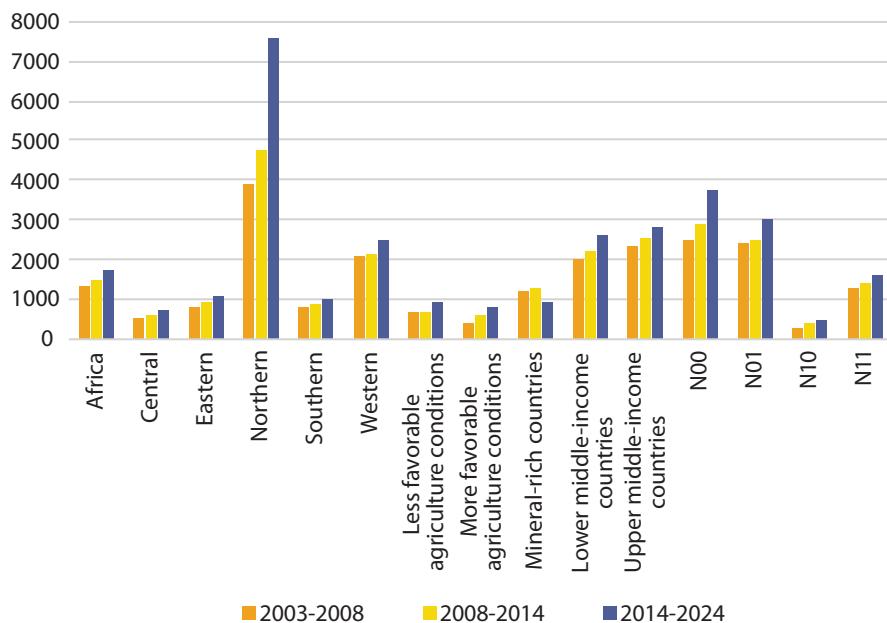

Sources: ReSAKSS based on World Bank (2025) and FAO (2025). Note: N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).

The growing trend has been consistent among the different geographic regions. Western Africa recorded the highest performance, rising from an annual average of \$105.8 billion in 2003-2008 to \$175.4 billion in 2024. Remarkable expansion was also recorded in eastern and northern Africa from an annual average of less than \$55 billion in 2003-2008 to more than \$100 billion in 2024. Though southern and central Africa had the lowest annual averages among the geographic regions, they exhibited steady progress in the growth of agriculture value added (Figure 18.12). Western Africa accounted for the largest share of the continent's agriculture value added during the Malabo period, while central Africa contributed the least. Likewise, lower middle-income countries and the group of countries that

embarked on both the first and second generations of NAIPs controlled the largest share in their respective groupings (Figure 18.13).

Growth in agriculture value added was highest during the Malabo (2014-2024) period at 3.5 percent. This was higher than the growth recorded during the Maputo period (2003-2013), which was less than 2.5 percent. Throughout the CAADP period, the growth performance remained highly uneven across the different subgroupings, highlighting mixed agricultural performance among African countries. Consistent improvements in the agriculture value added were observed in a few subgroupings but not in others. Moreover, except for the initial CAADP period, most of the subgroups were not able to surpass the CAADP growth target of 6 percent during the entire two decades of CAADP (Figure 18.14).

FIGURE 18.15—NATIONAL AGRICULTURE VALUE-ADDED, ANNUAL AVERAGE GROWTH, PERCENT, BY TIME PERIOD



Performance at country level was highly uneven, with some countries surpassing the 6 percent CAADP growth target, while most of the remaining countries fell below the target. During the Malabo period, seven countries exceeded the CAADP growth target of 6 percent while others came close to doing so (Figure 18.15). These countries were Guinea (12.8 percent), Ethiopia (7.3 percent), Senegal (7.1 percent), Gabon (6.9 percent), Rwanda (6.7 percent), Malawi (6.6 percent), and Angola (6.3 percent). Kenya (5.9 percent) and Niger (5.9 percent) came close to attaining the target, as did Comoros (5.7 percent).

During the two decades of CAADP, Africa's agricultural labor productivity growth recovered gradually after initially stagnating. The continental average improved from the -0.50 percent contraction recorded in 2003-2008 to 1.16 percent growth in 2008-2014, and accelerated further to 1.92 percent

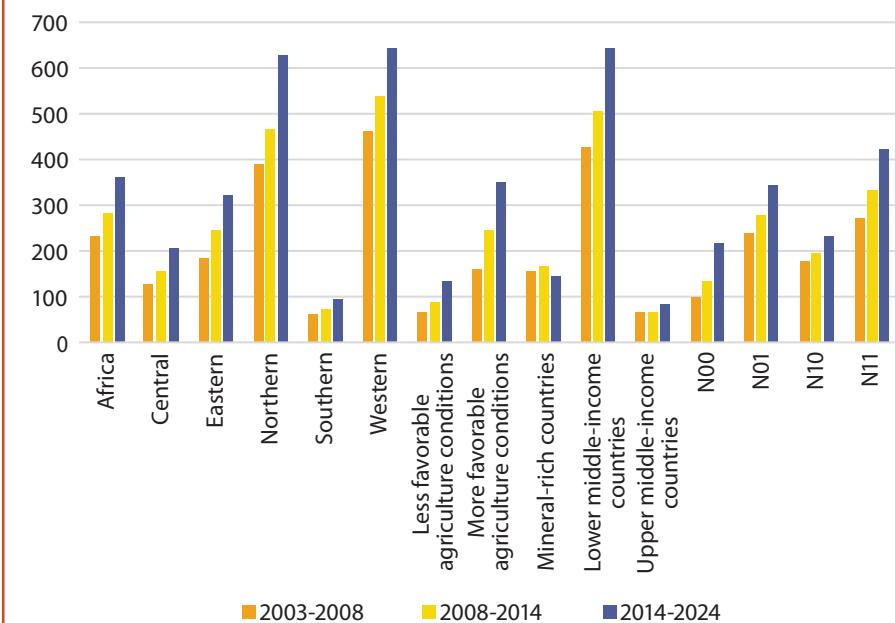
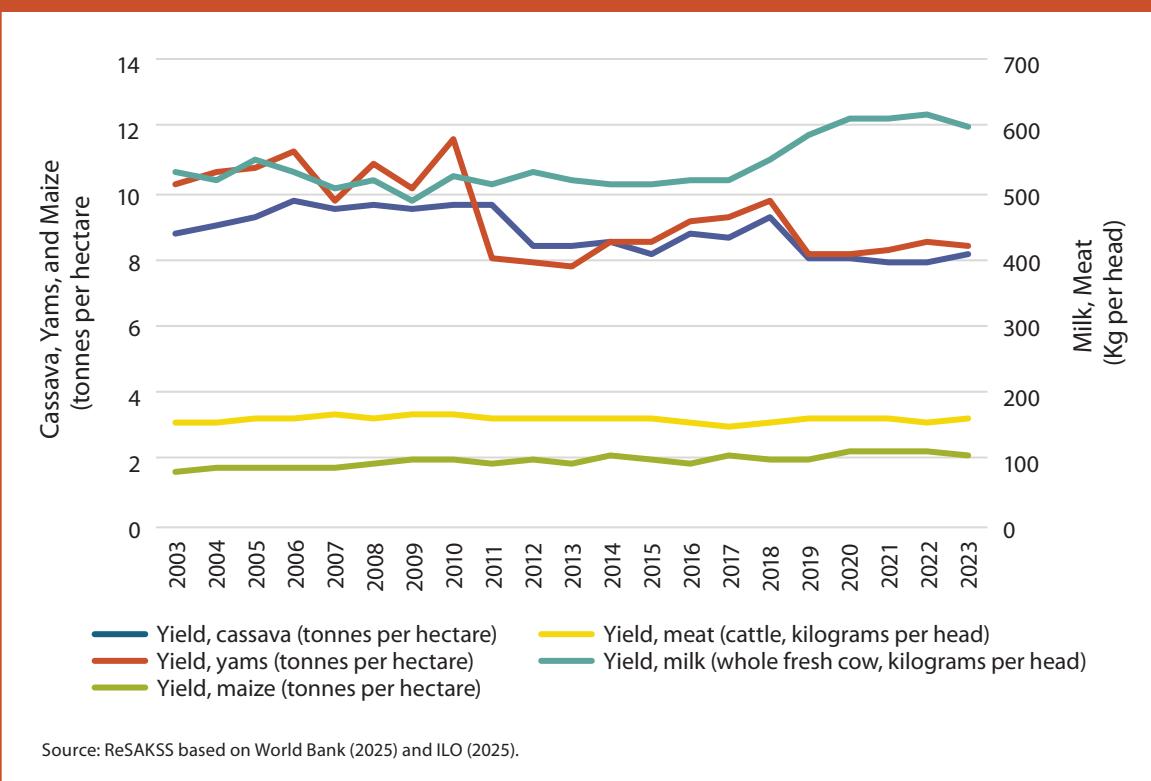

during the Malabo period (2014-2024). However, the dynamics varied widely across regions, income groups, and agricultural conditions. During the Malabo period, agricultural *labor productivity* contracted in mineral-rich countries, upper middle-income countries, and those countries that have not yet embarked on the NAIP (N00). While productivity was positive in southern and western Africa, the figure recorded was lower than the continental average (Annex Table L2.1.3). Africa's labor productivity, measured by agriculture value added per worker, increased from an average value of \$1,358.8 in 2003-2008 to \$1,497.5 in 2008-2014 and further to \$1,759.1 in 2014-2024. The performance during the Malabo period indicates a steady improvement over the last decade. Northern Africa recorded the highest labor productivity throughout the CAADP period (Figure 18.16).

FIGURE 18.16—AGRICULTURAL LABOR PRODUCTIVITY IN AFRICA, CONSTANT 2015 US\$, ANNUAL AVERAGE

Sources: ReSAKSS based on World Bank (2025) and FAO (2025). Note: N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).

FIGURE 18.17—AGRICULTURAL LAND PRODUCTIVITY IN AFRICA, CONSTANT 2015 US\$, ANNUAL AVERAGE



Sources: ReSAKSS based on World Bank (2025) and FAO (2025). Note: N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).

Land productivity, which is measured by agriculture value added per hectare of arable land, showed a consistent upward trend for Africa as a whole. Productivity rose from 2.01 percent during the early CAADP Maputo period (2003-2008) to 2.46 percent in 2008-2014, eventually reaching 3.26 percent in the 2014-2024 Malabo period (Annex Table L2.1.3). This positive growth trend resulted in steady improvements in land productivity, from an average annual per hectare value of \$234.3 in 2003-2008 to \$284.4 in 2008-2014 and further accelerating to \$366.0 in 2014-2024. Northern Africa, western Africa, and lower-middle-income countries recorded consistently higher land productivity levels throughout the entire CAADP period (Figure 18.17).

The five major agricultural commodities produced in Africa are cassava, yams, maize, cattle meat, and cow milk, which together have a combined production share of 28.8 percent during the last two decades (2003-2023). During the CAADP period, these five major commodities recorded varied yield trends (Annex Tables L2.1.5A, L2.1.5B, L2.1.5C, L2.1.5D, and L2.1.5E). For cassava, yields during the Maputo period (2003-2013) were characterized by a relatively stable upward trend in comparison to the Malabo period (2014-2024), which showed more volatility and generally lower yield levels. On the other hand, yields for yams experienced notable fluctuations during the early CAADP period, while the Malabo period recorded relatively lower average yields, although this period was more stable. Maize yields recorded steady

FIGURE 18.18—YIELDS FOR AFRICA'S FIVE MAJOR COMMODITIES (2003-2023)

improvements throughout the entire CAADP period, pointing to modest yield improvements. In contrast, cattle meat yields remained largely stagnant across the CAADP period. Although milk yields remained fairly flat during the first decade of CAADP, the Malabo period saw relatively stronger growth (Figure 18.18).

Intra-African Agricultural Trade

For Africa as a whole, intra-African agricultural exports grew steadily during the CAADP period from \$5.5 billion in 2003 to \$13.7 billion in 2014 and further to \$21.3 billion in 2024. During the last decade, exports grew by 55.6 percent, indicating that performance was far lower than the Malabo target

of tripling intra-African agricultural trade by 2025. As Figure 18.19 shows, trade growth did not follow a linear trajectory during the period under review. Strong expansion was observed in intra-African agricultural exports during the early CAADP period and from 2021. However, growth was slower during the first years of the Malabo period due to declining commodity prices, among other issues (Cissé et al, 2020). In terms of geographic regions, southern Africa stands out as the largest player with a share of 42 percent of all agricultural export trade within Africa during the Malabo period. Central Africa had the smallest proportion at less than 2 percent during the same period. Likewise, lower middle-income countries, as well as the group of countries that have formulated both generations of the NAIP, recorded a relatively higher magnitude in their respective categories.

During the review period, intra-African agricultural imports expanded steadily, growing by more than double between 2003 and 2024. Southern Africa maintained its position as the largest importer during this entire period (Annex Table L2.2.1B). Between 2014 and 2024, faster growth in intra-African agri-

cultural imports was observed in northern Africa, countries with less favorable agriculture conditions, and the countries that have embarked on the second generation of NAIPs only (N01). In terms of both intra-African agricultural exports and imports, South Africa remained a dominant player, followed by Egypt (Figure 18.20).

CAADP Results Framework Input (Level 3) Indicators: Strengthening Systemic Capacity to Deliver Results *Government Expenditure on Agriculture*

Agriculture is the leading economic sector in most African countries, making significant contributions to food security, employment, agro-processing, and

FIGURE 18.19—INTRA-AFRICAN AGRICULTURAL EXPORTS, CONSTANT 2015 US\$ BILLIONS, AFRICA AND COUNTRY GROUPINGS

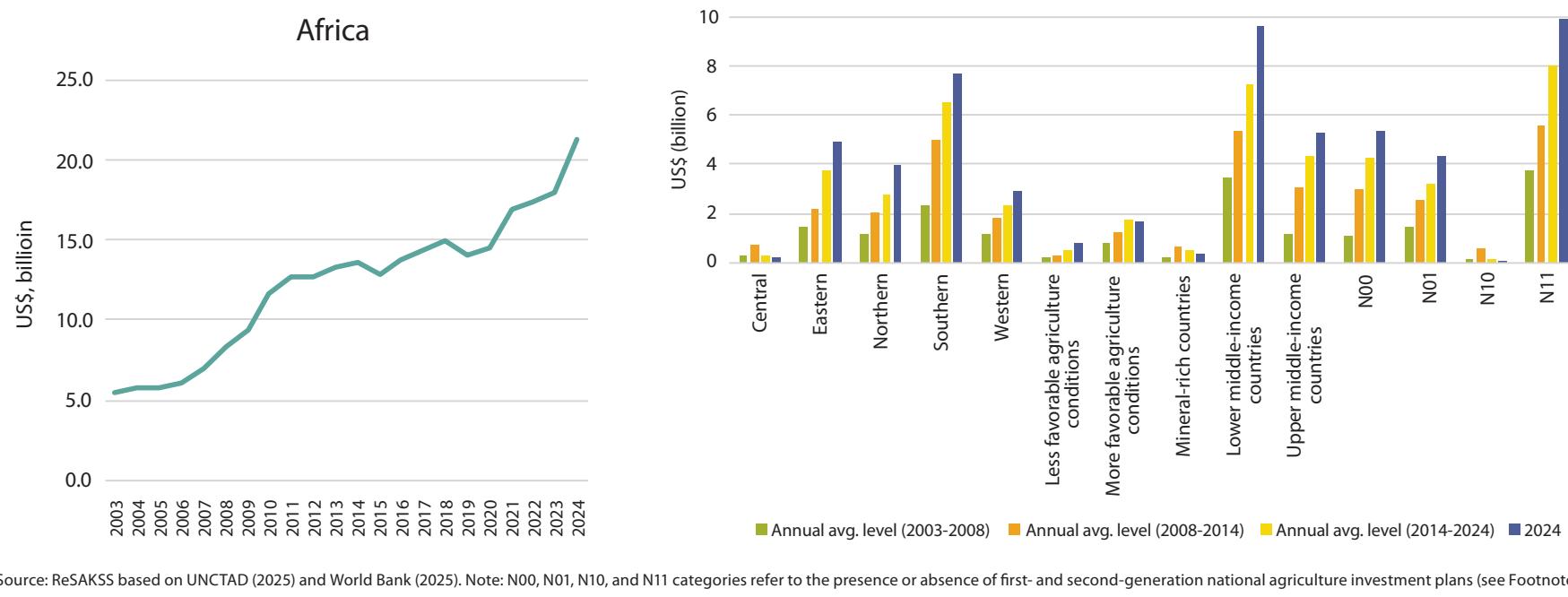
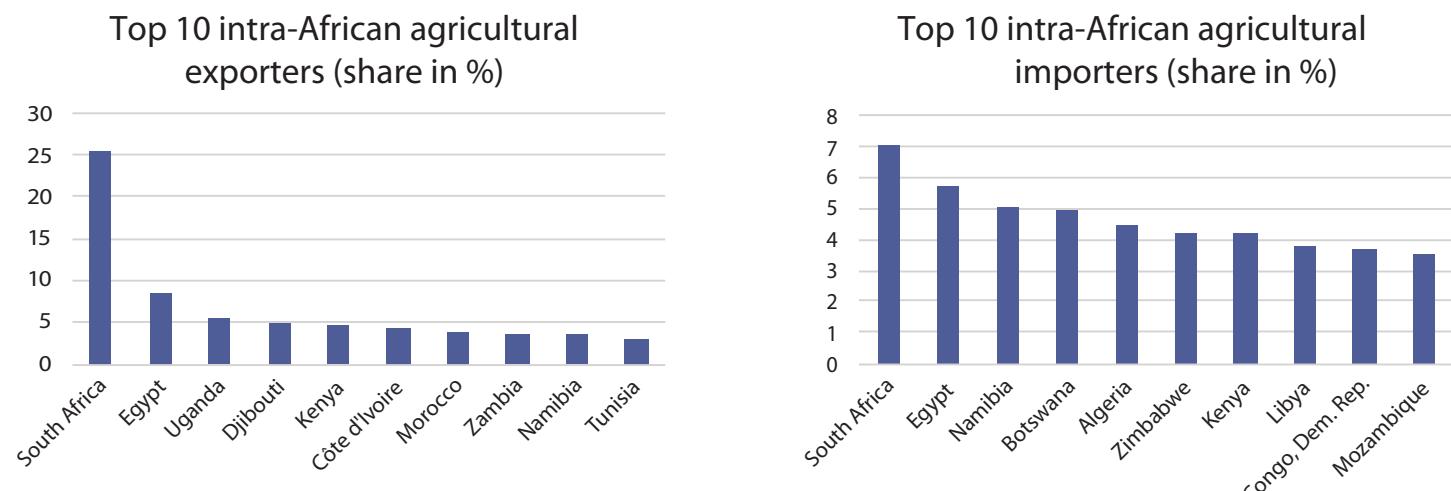
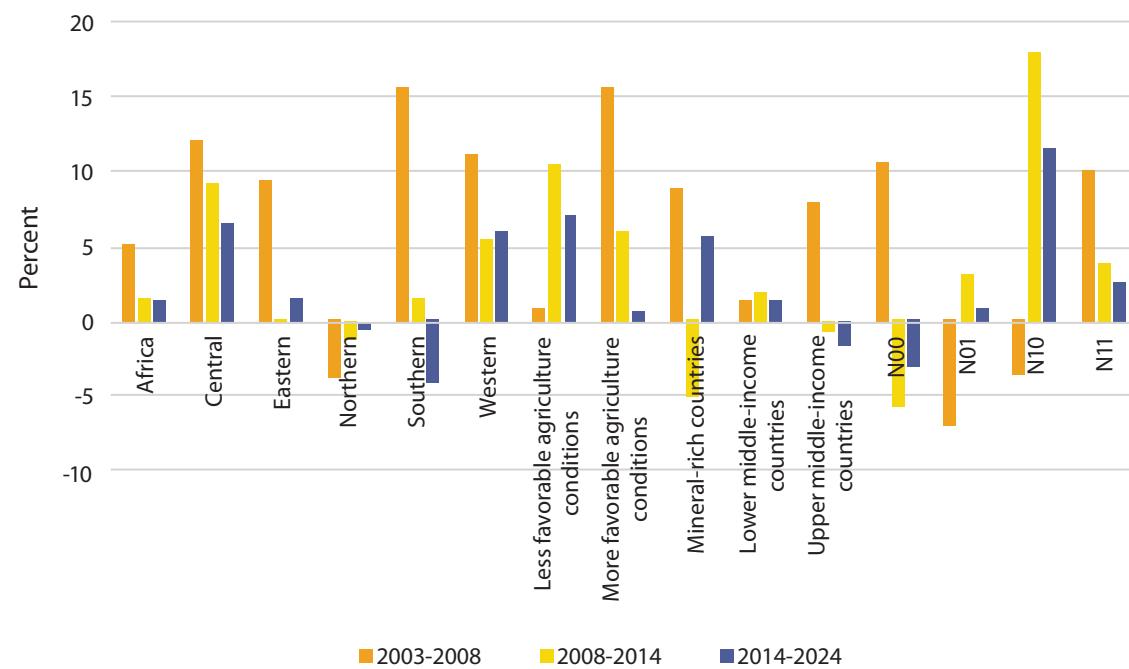



FIGURE 18.20—TOP 10 COUNTRIES ENGAGED IN INTRA-AFRICAN TRADE (% SHARE, 2014-2024)

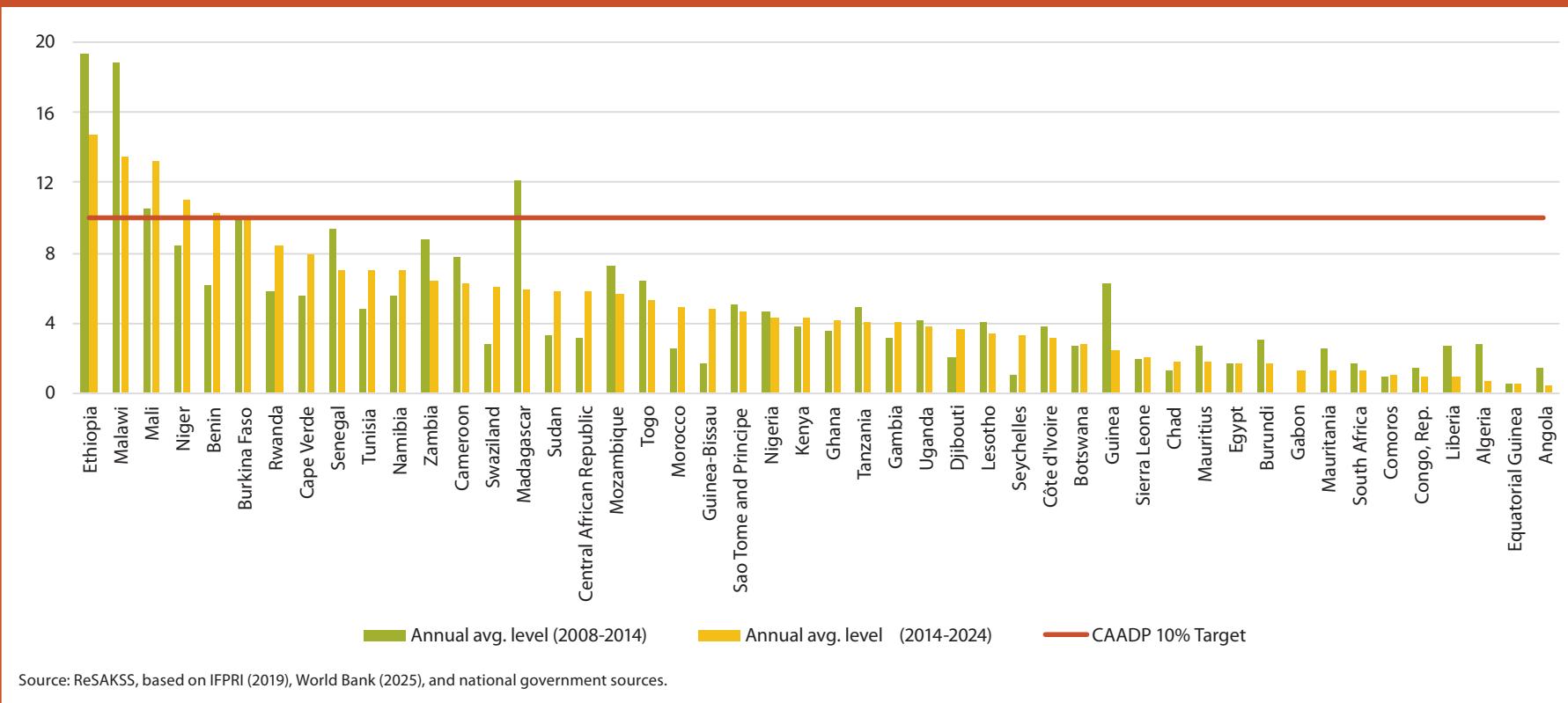

foreign exchange earnings through international trade. Public spending on agriculture plays a catalytic role for private sector investment by providing public goods and services necessary for stimulating agricultural growth. CAADP targets an agricultural expenditure share of at least 10 percent of total government expenditure, and at least 19 percent of agriculture value added. In level terms, annual government agricultural expenditure increased from \$13.3 billion on average between 2003 and 2008, to \$14.5 billion between 2008 and 2014, and then to \$17.7 billion in the period from 2014 to 2024. A breakdown of government agricultural expenditure by country subgroup shows notable variations in the level of such spending. Among countries classified by income, middle-income countries accounted for 61 percent of total public spending on agriculture in Africa between 2014 and 2024 (\$10.8 billion). During this same period, the share of government spending on agriculture was highest in the group of countries that have formulated both generations of NAIP (N11). This was recorded at 63 percent of all such spending (\$11.2 billion).

Growth in government agricultural expenditure in Africa was highest in the early CAADP period but declined in subsequent sub-periods.

The average annual growth rate in government agricultural spending was 5.3 percent between 2003 and 2008, but this declined to 1.7 percent between 2008 and 2014, and then declined slightly further to 1.6 percent between 2014 and 2024. As shown in Figure 18.20, a similar downward trend is observed for most of the country subgroups, particularly during the Malabo period from 2014 to 2024.

The share of government agricultural expenditure within total government expenditure remained modest over the last two decades. For Africa as a whole, the share was 3.6 percent on average between 2003 and 2008, before declining further to 2.6 percent during the 2008 to 2014 period. The share of agricultural

FIGURE 18.21—GOVERNMENT AGRICULTURAL EXPENDITURE, AVERAGE ANNUAL PERCENTAGE CHANGE, 2003-2024

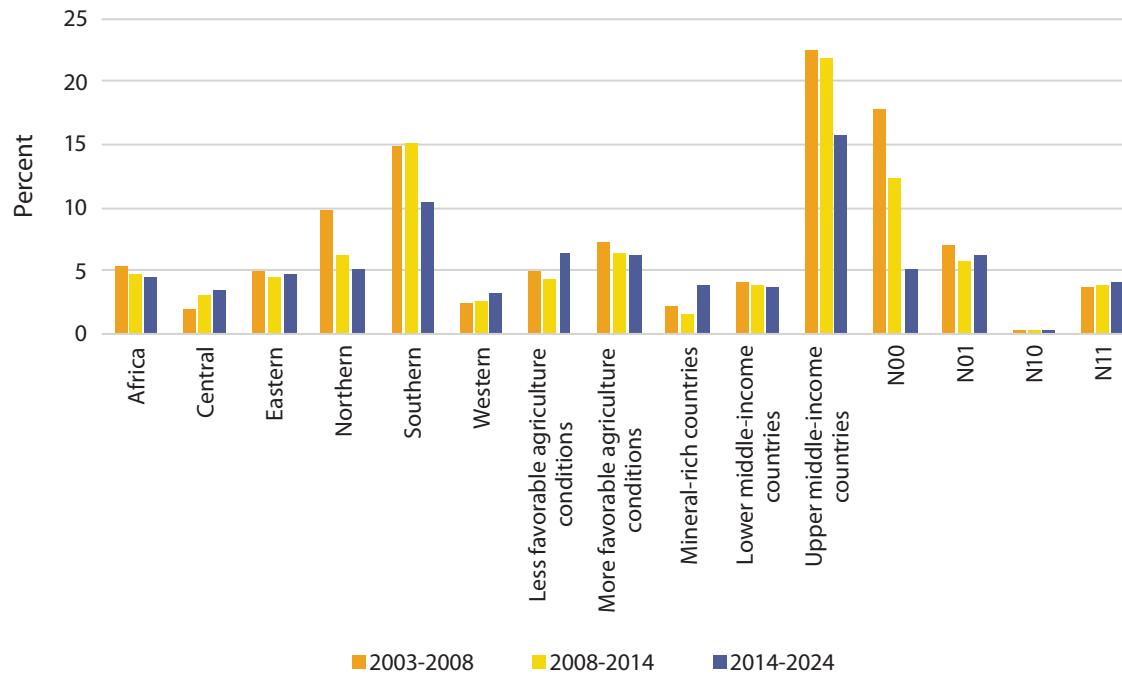


Source: ReSAKSS, based on IFPRI (2019), World Bank (2025), and national government sources. Note: N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).

expenditure within total government expenditure between 2014 and 2024 remained steady at 2.6 percent.

Marked differences in the share of agricultural expenditure within total government expenditure were observed among the various country subgroups during the review period (Annex Table L.3.5.2). The highest share was observed among lower-income countries with less favorable agricultural conditions and lower-income countries with more favorable agricultural conditions in all three sub-periods. Among geographic regions, the eastern Africa region had, on average, the highest share of total government expenditure allocated to agricultural expenditure.

FIGURE 18.22—SHARE OF GOVERNMENT AGRICULTURAL EXPENDITURE IN TOTAL GOVERNMENT EXPENDITURE, PERCENT (%), 2008-2024, BY COUNTRY



Source: ReSAKSS, based on IFPRI (2019), World Bank (2025), and national government sources.

Marked differences were also seen across African countries when looking at agricultural expenditure as a share of total government expenditure at the country level. Few countries consistently allocated a high share of their total public spending to agriculture (Figure 18.22). Only Ethiopia, Malawi, Burkina Faso, and Mali consistently met the CAADP 10 percent budget target during the period from 2008 to 2024. The performance of other countries was much less consistent. Benin and Niger achieved the 10 percent budget target during the 2014 to 2024 period, as they devoted a much larger share of the national budget to agriculture than they did between 2008 and 2014. During the same period, Rwanda allocated more than 8 percent of its public spending to agriculture, coming close to the CAADP target of 10 percent.

The share of government agricultural expenditure in agricultural GDP marginally declined for Africa from an average of 5.4 percent for the 2003-2008 period, to 4.8 percent for the 2008-2014 period, and then 4.5 percent between 2014 and 2024 (Figure 18.23). The performance of country subgroups was mixed with some groups showing an increasing trend, while others trended in the opposite direction (Annex Table L.3.5.3). During the review period, public spending on agriculture relative to the size of the country's agriculture sector was highest for upper middle-income countries and the southern Africa region, followed by the group of countries that are yet to embark on a NAIP (N00).

FIGURE 18.23—GOVERNMENT AGRICULTURAL EXPENDITURE AS A SHARE OF AGRICULTURE VALUE ADDED, AVERAGE, PERCENT, 2003-2022

Source: ReSAKSS, based on IFPRI (2019), World Bank (2025), and national government sources. Note: N00, N01, N10, and N11 categories refer to the presence or absence of first- and second-generation national agriculture investment plans (see Footnote 5).

Capacities for Agriculture and Food Security Policy Design and Implementation

The progress made on strengthening systemic capacity for agriculture and food-security policy planning and implementation under CAADP is summarized in Annex Table L3(b). Key achievements in this regard as of September 2025, included: (1) 42 countries had developed new or updated NAIPs through inclusive and participatory processes; (2) 28 countries had established inclusive, institutionalized mechanisms for mutual accountability and peer review, primarily through JSRs; (3) 36 countries were implementing evidence-based

policies; (4) 31 countries had functional multisectoral and multistakeholder coordination bodies, mainly agricultural sector working groups; and (5) 22 countries had successfully implemented agriculture-related public-private partnerships to strengthen specific value chains.

These figures are drawn from self-reporting by countries or expert assessments. Some measures required subjective judgment regarding the quality of capacities and processes, and so these values may be revised in the future.

Conclusion

African countries have made significant progress, particularly during the first decade of CAADP, in a number of areas, including economic growth, poverty and hunger reduction, and agricultural growth. However, progress on several key development outcomes has slowed in the past decade. The GDP per capita grew strongly during the early CAADP years but then stagnated during the Malabo period. Poverty continued to decline, but at a decelerating rate. Progress in reducing child malnutrition was sustained throughout the entire CAADP period, but the prevalence of undernourishment reversed its decline and began to increase throughout the continent. These impacts demonstrate the extent of Africa's vulnerability to shocks, including climate variations, conflicts, global trade disruptions, and the COVID-19 pandemic.

Africa's agricultural sector continued to grow throughout the CAADP period, with consistent increases in agricultural value added as well as land and labor productivity. However, agricultural growth fell short of the continent's ambitions. Africa needs to further accelerate agricultural productivity growth if it is to surpass the CAADP target of 6 percent agricultural growth, as well as address poverty and food security issues. This requires the continent to adopt a holistic approach that includes: improving the amounts and efficiency of public spending; linking smallholder farmers to markets and value chains; and accelerating the implementation of the African Continental Free Trade Area (AfCFTA) to boost intra-African trade in agriculture. Intra-African trade represents less than 20 percent of Africa's total trade, while Asia's intra-regional trade share is more than 50 percent (Ngwu and Ojah 2024). Addressing the yield gap and trade-related hurdles can boost agricultural productivity and intra-African trade.

Despite the critical role of government expenditure in achieving agricultural transformation, few countries have met the CAADP target of allocating at least 10 percent of their total public spending to the sector. In addition, agricultural spending relative to agricultural GDP is low and has been declining since 2003. Public expenditure is essential for unlocking the sector's potential, driving productivity growth, and reducing poverty. The Kampala CAADP Declaration maintained the 10 percent target and added a target of spending at least 15 percent of agricultural GDP within the sector. Countries should continue with efforts to increase public allocations to agriculture. While

acknowledging that public resources are limited, it is also critical to efficiently allocate available resources to sub-sectors with the highest productivity growth potential and poverty reduction potential. Therefore, the generation and use of evidence in formulating the new National Agrifood Systems Investment Plans (NASIPs) is important to inform prioritization and resource allocation.

As Africa transitions from the Malabo Declaration period to the Kampala Declaration period, it is important to recognize the successes as well as the setbacks experienced during the first two decades of CAADP implementation. Sustained commitment to the CAADP has raised agriculture's profile, and the development of the BR as a continental mutual accountability process with broad participation is a significant accomplishment. However, the core, original CAADP targets of achieving an agricultural growth rate of 6 percent and the government agricultural expenditure share of 10 percent were not achieved, while the continent's progress toward improved livelihoods and poverty and hunger reduction was severely curtailed by external and internal shocks. Achieving the ambitions of the Kampala Declaration will require sustained commitment and the mobilization of sustainable financing and technical support for effective and timely Kampala domestication and implementation. In addition, strong data and knowledge systems will be essential to reliably track progress and inform policy design and implementation. Equally important is the development of a new robust CAADP results framework and SMART (specific, measurable, achievable, relevant, and time-bound) indicators to track progress, assess impact, and ensure continuous learning and improvement across countries.